library(knitr)
library(pander)
library(tidyr)
library(compute.es)
library(metafor)
library(plyr)
library(dplyr)
library(lme4)
library(car)
library(forestplot)
library(ggplot2)
library(ggthemes)
library(kableExtra)
library(ggrepel)
library(reshape2)
library(RColorBrewer)
library(ggridges)
library(rstan) #Note that installation requires some effort: dependency for brms
#devtools::install_github("paul-buerkner/brms")
library(brms) 
library(backports) #seems to be a dependency
library(bayesplot)
#devtools::install_github("mvuorre/brmstools")
library(brmstools)
library(metaAidR) # install.packages("metaAidR")
library(cowplot)
#devtools::install_github("eclarke/ggbeeswarm")
library(ggbeeswarm)
library(gridExtra)
source("I2_function.R") #Adapted function for obtaining I2 with CIs
source("Vdodge_function.R") # nice function for ggplot
source("Tidy_functions_for_brms.R") #Tidy functions for making model tables for brms

Supplementary Methods

Our aim was to investigate the effects of sexual selection on population fitness by conducting a meta-analysis on studies that measured fitness related outcomes after experimentally evolving a population under varying levels of opportunity for sexual selection. Here we describe the process of the literature search, data extraction, effect size calculation, formulation of multilevel models and assessing publication bias. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) as a guide during this meta-analysis. The repository used to formulate this document can be found here: https://github.com/JustinCally/SexualSelection

Inclusion/Exclusion criteria

After removing duplicates papers recovered from both Web of Science and Scopus, we read the titles and abstracts of the remaining 1015 papers, and removed papers that were not relevant (typically because they were not an empirical study using experimental evolution). This left 130 papers, for which we read the full text and applied the following selection criteria:

  • (1: Study Design) The study was an experimental evolution study lasting >1 generation
  • (2: Population) a) The study was conducted using an animal species that was b) dioecious
  • (3: Intervention and Control) The study experimentally manipulated the strength of sexual selection for at least one generation (e.g. via enforced monogamy or an altered sex ratio)
  • (4: Outcomes) The study measured a trait that we judged to be a potential correlate of population fitness.

Criterion 4 is somewhat subjective, because there is rarely enough data justify the assumption that a particular trait is (or is not) correlated with population fitness. We therefore relied on our best judgement when deciding which studies to exclude (see Supplementary Table 1). The inclusion/exlusion critera as applied to each study are detailed in Supplementary Table 2.

Supplementary Table 1: We classified each of the twenty fitness outcomes into three broad groups – direct, indirect and ambiguous – based on the established link with population fitness, the directionality of the measure. Here we detailed how these outcomes were measured in the primary studies.

read.csv('data/outcome.descriptions.csv', fileEncoding="UTF-8") %>% select(-Examples) %>%
  kable("html") %>% kable_styling() %>%
  scroll_box(width = "100%", height = "500px")
Outcome Classification Explanation Citation
Behavioural Plasticity Ambiguous Female kicking against male harassment in different sociosexual contexts for the beetle Callosobruchus maculatus. (Lieshout, McNamara, and Simmons 2014)
Body Size Ambiguous Body size was often recorded to correct for other morphometric traits (e.g. body condition, strength or testes weight). It was measured as either length or dry mass. (Simmons and Garcia-Gonzalez 2008; Almbro and Simmons 2014)
Development Rate Ambiguous Egg-to adult development time was recorded in several studies and often alongside traits other life-history traits suspected to impact fitness. (Fricke and Arnqvist 2007; Hollis and Kawecki 2014; McKean and Nunney 2008)
Early Fecundity Ambiguous Early fecundity was measured (alongside lifetime fecundity) as a life-history trait that may impact lifetime reproductive success. It was defined as either the total or proportional reproductive output in earlier stages of maturity (e.g. within the first 7 days). (Crudgington, Fellows, and Snook 2010; Tilszer et al. 2006)
Immunity Ambiguous Phenoloxidase (PO) activity or parasite load. (McKean and Nunney 2008; Hangartner et al. 2015; Hangartner et al. 2013; McNamara, Lieshout, and Simmons 2014)
Male Attractiveness Ambiguous Inferred from female preference tests in mice and male ornament size (coloration) in guppies. (Firman 2014; Nelson et al. 2013; Pélabon et al. 2014)
Male Reproductive Success Ambiguous Measured as the total progeny sired in males. (Hollis and Kawecki 2014)
Mating Duration Ambiguous Mating duration may have variable fitness impacts based on the soiciosexual conditions and extent of sexual conflict. It may be beneficial to have longer mating bouts for a male in a competitive environment however it may be damaging for a female under benign conditions. (Lieshout, McNamara, and Simmons 2014; Edward, Fricke, and Chapman 2010; L. Michalczyk, Millard, Martin, Lumley, Emerson, and Gage 2011; Nandy et al. 2013)
Pesticide Resistance Ambiguous Pesticide resistance was measured both in the presence and absence of pesticides for the insect Tribolium castaneum, it was a binary measure of resistance to knockdown that was incorporated into generalized linear mixed models. (Jacomb, Marsh, and Holman 2016)
Mutant Frequency Indirect Allele and mutant frequency measured at the population level. (Arbuthnott and Rundle 2012; Hollis, Fierst, and Houle 2009)
Body Condition Indirect Mean body weight of Onthophagus Taurus adjusted for body size (thorax width). (Simmons and Garcia-Gonzalez 2008)
Fitness Senescence Indirect Rate of decline in survival probability across lifespan. (Hollis and Kawecki 2014; Archer et al. 2015)
Lifespan Indirect Longevity or survival across the entire lifespan or from a given point once under stressful conditions, such as starvation or after females mated in different operational sex ratios. (Wigby and Chapman 2004; Martin and Hosken 2003)
Mating Frequency Indirect Number of mounts by males on females in Tribolium castaneum and Drosophila melanogaster. (Hangartner et al. 2015; L. Michalczyk, Millard, Martin, Lumley, Emerson, and Gage 2011)
Mating Latency Indirect Time taken for a male to undertake their first copulatory mount from the time of being first put together with female/s. (Lieshout, McNamara, and Simmons 2014; Hollis and Kawecki 2014; Edward, Fricke, and Chapman 2010; L. Michalczyk, Millard, Martin, Lumley, Emerson, and Gage 2011; Nandy et al. 2013)
Mating Success Indirect Male mating success measured males ability to successfully mate with females. Often in the presence of other males. Mating success of a male against a rival male can be determined via competing a focal male against an irradiated (infertile) competitor, the resulting proportion of eggs hatching are then determined to be a measure of the focal males success. Mating success also included measurements of mating capacity where males were continually presented with females until exhausted, the number of sequential matings were then recorded and mating offence and defence ability. The mating offence and defence capability was estimated via paternity share of a male when in the first mating position (P1) or the second (P2). (Tilszer et al. 2006; Nandy et al. 2013; Debelle, Ritchie, and Snook 2016; McGuigan, Petfield, and Blows 2011; Crudgington et al. 2009)
Strength Indirect Male pulling strength in the dung beetle, Onthophagus Taurus, measured by attaching weights and measuring the weight the beetle was able to pull. (Almbro and Simmons 2014)
Ejaculate Quality and Production Indirect Sperm quality and production grouped multiple measured outcomes together, both within a study (28) and during the meta-analysis. This includes sperm size, plug size, testes size, soporific effect, ejaculate weight, accessory gland size, motility, path velocity, sperm longevity. (Lieshout, McNamara, and Simmons 2014; Firman and Simmons 2010; Fritzsche et al. 2014; L. Gay, Hosken, et al. 2009; McNamara et al. 2016)
Extinction Rate Direct Extinction rate was measured at the population level, either via recording the proportion of extinct lines after a given number of generations or via analysis of extinction rate over consecutive generations via the Weibull baseline hazard distribution. (Jarzebowska and Radwan 2010; Plesnar-Bielak et al. 2012; Lumley et al. 2015)
Offspring Viability Direct Offspring viability, also recorded as egg-to-adult viability or embryonic viability, was measured as survival to a certain age (e.g. 1 year or life stage and hatching). (Pélabon et al. 2014; Plesnar, Konior, and Radwan 2011)
Female Reproductive Success Direct A measure of the number of offspring produced by an individual female. Reproductive success was also described as fecundity, number of offspring produced, fertility in females and proportion. (Edward, Fricke, and Chapman 2010; Firman 2011; Bernasconi and Keller 2001)
Both Reproductive Success Direct Similar to Female Reproductive Success, however measurements of offspring produced are sourced from a focal male-female pair, of which either male or female may limit the number of offspring produced. (Lumley et al. 2015)


Supplementary Table 2: A study was deemed eligible for inclusion in the meta-analysis if it met all four criteria discussed above (referred to by their numbers, 1-4, in this table). We went through these four criteria in a step-wise fashion, for each of the 130 studies for which we read the full text, and noted the first criterion that was failed (if any). The table provides notes on our inclusion/exclusion decisions.

read.csv('data/Eligibility Workbook.csv', fileEncoding="UTF-8") %>% 
  mutate(Citation = paste0('[@',Citation,']')) %>%
  kable("html") %>% kable_styling() %>%
  scroll_box(width = "100%", height = "500px")
Citation Authors Year Title Study.Design Population Intervention.and.Control Outcomes Included Exclusion.Reason Notes
(Aguirre and Marshall 2012) Aguirre, J. D. and D. J. Marshall 2012 Does Genetic Diversity Reduce Sibling Competition? No No 1 Not an experimental evolution study: full-sib/half-sib breeding design
(Ahuja and Singh 2008) Ahuja, A. and R. S. Singh 2008 Variation and evolution of male sex combs in Drosophila: Nature of selection response and theories of genetic variation for sexual traits No No 1 Artificial selection was conducted
(Almbro and Simmons 2014) Almbro, M. and L. W. Simmons 2014 Sexual Selection Can Remove an Experimentally Induced Mutation Load Yes Yes Yes Yes Yes Male strength is important in male-male competition
(Amitin and Pitnick 2007) Amitin, E. G. and S. Pitnick 2007 Influence of developmental environment on male- and female-mediated sperm precedence in Drosophila melanogaster Yes Yes No No 3 Larval density was the intervention: not strength of sexual selection
(Antolin et al. 2003) Antolin, M. F., P. J. Ode, G. E. Heimpel, R. B. O’Hara and M. R. Strand 2003 Population structure, mating system, and sex-determining allele diversity of the parasitoid wasp Habrobracon hebetor No No 1 Not experimental evolution: Lab rearing of wild populations with eventual genetic analysis
(Arbuthnott et al. 2014) Arbuthnott, D., E. M. Dutton, A. F. Agrawal and H. D. Rundle 2014 The ecology of sexual conflict: ecologically dependent parallel evolution of male harm and female resistance in Drosophila melanogaster Yes Yes No No 3 Intervention was either ethanol or cadmium mixture
(Arbuthnott and Rundle 2012) Arbuthnott, D. and H. D. Rundle 2012 Sexual Selection Is Ineffectual or Inhibits the Purging of Deleterious Mutations in Drosophila Melanogaster Yes Yes Yes Yes Yes Natural selection acted against known deleterious alleles, thus indicate fitness aspect
(Arbuthnott and Rundle 2014) Arbuthnott, D. and H. D. Rundle 2014 Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations Yes Yes No No 3 Intervention was either ethanol or cadmium mixture
(Archer et al. 2015) Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Sex-specific effects of natural and sexual selection on the evolution of life span and ageing in Drosophila simulans Yes Yes Yes Yes Natural selection was measured simultanous and thus provides measurement of suitability of phenotype to environment
(Artieri et al. 2008) Artieri, C. G., W. Haerty, B. P. Gupta and R. S. Singh 2008 Sexual selection and maintenance of sex: Evidence from comparisons of rates of genomic accumulation of mutations and divergence of sex-related genes in sexual and hermaphroditic species of Caenorhabditis No No 1 Comparative genomic approach
(Bacigalupe et al. 2007) Bacigalupe, L. D., H. S. Crudgington, F. Hunter, A. J. Moore and R. R. Snook 2007 Sexual conflict does not drive reproductive isolation in experimental populations of Drosophila pseudoobscura Yes Yes Yes No No 4 Viability and sterility were measured as well as mating speed, however these were in crosses, refer to 2008 study for beater outcomes
(Bacigalupe et al. 2008) Bacigalupe, L. D., H. S. Crudgington, J. Slate, A. J. Moore and R. R. Snook 2008 Sexual selection and interacting phenotypes in experimental evolution: A study of Drosophila pseudoobscura mating behavior Yes Yes Yes Yes No Data not suitable Mating speed cited as a measure of fitness. Because of the crossses the data is not able to be extracted to an effect size that is comprable to other studies
(Barbosa et al. 2012) Barbosa, M., S. R. Connolly, M. Hisano, M. Dornelas and A. E. Magurran 2012 Fitness consequences of female multiple mating: A direct test of indirect benefits No No 1 Measures multiple mating not experimental evolution with sexual selection treatments
(Bernasconi and Keller 2001) Bernasconi, G. and L. Keller 2001 Female polyandry affects their sons’ reproductive success in the red flour beetle Tribolium castaneum Yes Yes Yes Yes Yes Polyandry was done sequentially with postcop mate choice.
(Bielak et al. 2014) Bielak, A. P., A. M. Skrzynecka, K. Miler and J. Radwan 2014 Selection for alternative male reproductive tactics alters intralocus sexual conflict No No 1 Artificial selection was conducted
(Blows 2002) Blows, M. W. 2002 Interaction between natural and sexual selection during the evolution of mate recognition Yes Yes Yes No No 4 Hybrid Drosophilia used, indirect fitness was measured (mate recognition system)
(Brommer et al. 2012) Brommer, J. E., C. Fricke, D. A. Edward and T. Chapman 2012 Interactions between Genotype and Sexual Conflict Environment Influence Transgenerational Fitness in Drosophila Melanogaster Yes Yes Yes Yes Yes Multiple males but only one at a time: still is post copulatory SS, so included
(Castillo et al. 2015) Castillo, D. M., M. K. Burger, C. M. Lively and L. F. Delph 2015 Experimental evolution: Assortative mating and sexual selection, independent of local adaptation, lead to reproductive isolation in the nematode Caenorhabditis remanei Yes Yes No No 3 No SS lines
(Cayetano et al. 2011) Cayetano, L., A. A. Maklakov, R. C. Brooks and R. Bonduriansky 2011 Evolution of Male and Female Genitalia Following Release from Sexual Selection Yes Yes Yes No No 4 Conflict / burdensome and defensive / offensive traits have fitness costs and benefits: Removing as too difficult to see clear fitness of measurements
(Chandler, Ofria, and Dworkin 2013) Chandler, C. H., C. Ofria and I. Dworkin 2013 Runaway Sexual Selection Leads to Good Genes Yes No No 2a Digital organisms used
(Chenoweth et al. 2015) Chenoweth, S. F., N. C. Appleton, S. L. Allen and H. D. Rundle 2015 Genomic Evidence that Sexual Selection Impedes Adaptation to a Novel Environment Yes Yes Yes No No 4 Alongside direct fitness, SNPs also used. This paper reports SNPs while Rundle (2006) reports fitness measures. Thus data is extracted from that paper, not this one
(Chenoweth et al. 2007) Chenoweth, S. F., D. Petfield, P. Doughty and M. W. Blows 2007 Male choice generates stabilizing sexual selection on a female fecundity correlate No No 1 Behavioural mate choice experiment
(Chenoweth, Rundle, and Blows 2008) Chenoweth, S. F., H. D. Rundle and M. W. Blows 2008 Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection Yes Yes Yes No No 4 Natural selection was also measured and CHCs provide an indirect fitness aspect but too difficult to compare (CHCs were not used as outcome in this meta-analysis)
(Chenoweth, Rundle, and Blows 2010) Chenoweth, S. F., H. D. Rundle and M. W. Blows 2010 Experimental evidence for the evolution of indirect genetic effects: changes in the interaction effect coefficient, psi (_), due to sexual selection Yes Yes Yes No No 4 CHCs may provide indirect fitness aspect but are very difficult measures to compare or turn into effect sizes
(Crudgington et al. 2005) Crudgington, H. S., A. P. Beckerman, L. Brustle, K. Green and R. R. Snook 2005 Experimental removal and elevation of sexual selection: Does sexual selection generate manipulative males and resistant females? Yes Yes Yes Yes Yes
(Crudgington et al. 2009) Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Experimental Manipulation of Sexual Selection Promotes Greater Male Mating Capacity but Does Not Alter Sperm Investment Yes Yes Yes Yes Yes Appears to measure more direct and indirect outcomes
(Crudgington, Fellows, and Snook 2010) Crudgington, H. S., S. Fellows and R. R. Snook 2010 Increased opportunity for sexual conflict promotes harmful males with elevated courtship frequencies Yes Yes Yes Yes Yes
(Debelle, Ritchie, and Snook 2016) Debelle, A., M. G. Ritchie and R. R. Snook 2016 Sexual selection and assortative mating: an experimental test Yes Yes Yes Yes Yes
(Demont et al. 2014) Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Experimental Removal of Sexual Selection Reveals Adaptations to Polyandry in Both Sexes Yes Yes Yes Yes Yes
(Edward, Fricke, and Chapman 2010) Edward, D. A., C. Fricke and T. Chapman 2010 Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection Yes Yes Yes Yes Yes
(Fava 1975) Fava, G. 1975 Studies on the selective agents operating in experimental populations of Tisbe clodiensis (Copepoda, Harpacticoida) Yes Yes No No 3 No difference in SS between treatments: Instead different genotype frequencies.
(Firman 2011) Firman, R. C. 2011 Polyandrous females benefit by producing sons that achieve high reproductive success in a competitive environment Yes Yes Yes Yes Yes It looks like post copulatory selection was used here
(Firman 2014) Firman, R. C. 2014 Female social preference for males that have evolved via monogamy: evidence of a trade-off between pre- and post-copulatory sexually selected traits? Yes Yes Yes Yes Yes The outcome measured was female preference and male scent marking rate. Likely to have a role in fitness but not explicitly stated
(Firman, Cheam, and Simmons 2011) Firman, R. C., L. Y. Cheam and L. W. Simmons 2011 Sperm competition does not influence sperm hook morphology in selection lines of house mice Yes Yes Yes Yes Yes Sperm quality was measured
(Firman et al. 2015) Firman, R. C., F. Garcia-Gonzalez, E. Thyer, S. Wheeler, Z. Yamin, M. Yuan and L. W. Simmons 2015 Evolutionary change in testes tissue composition among experimental populations of house mice Yes Yes Yes Yes Yes Amount of sperm producing tissue was measured as it provides an advantage in sperm competition
(Firman et al. 2014) Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 The Coevolution of Ova Defensiveness with Sperm Competitiveness in House Mice Yes Yes Yes Yes Yes Ova defensivenenss can bias fertilization to a more specific type of sperm and thus be a fitness adavantage
(Firman and Simmons 2010) Firman, R. C. and L. W. Simmons 2010 Experimental Evolution of Sperm Quality Via Postcopulatory Sexual Selection in House Mice Yes Yes Yes Yes Yes Polygamous lines have only post-copulatory selection
(Firman and Simmons 2011) Firman, R. C. and L. W. Simmons 2011 Experimental evolution of sperm competitiveness in a mammal Yes Yes Yes Yes Yes Sperm competition is a fitness advantage
(Firman and Simmons 2012) Firman, R. C. and L. W. Simmons 2012 Male house mice evolving with post-copulatory sexual selection sire embryos with increased viability Yes Yes Yes Yes Yes Post cop SS used
(Fricke, Andersson, and Arnqvist 2010) Fricke, C., C. Andersson and G. Arnqvist 2010 Natural selection hampers divergence of reproductive traits in a seed beetle Yes Yes Yes No No 4 Could not use the broad outcome of reproductive characteristics as it is not directional
(Fricke and Arnqvist 2007) Fricke, C. and G. Arnqvist 2007 Rapid adaptation to a novel host in a seed beetle (Callosobruchus maculatus): The role of sexual selection Yes Yes Yes Yes Yes Post cop SS used
(Fritzsche, Booksmythe, and Arnqvist 2016) Fritzsche, K., I. Booksmythe and G. Arnqvist 2016 Sex Ratio Bias Leads to the Evolution of Sex Role Reversal in Honey Locust Beetles Yes Yes Yes Yes Yes Male bias and female bias setups without monogamus/lack of SS
(Fritzsche et al. 2014) Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Female, but not male, nematodes evolve under experimental sexual coevolution Yes Yes Yes Yes Yes Male bias and female bias setups without monogamus/lack of SS
(Garcia-Gonzalez, Yasui, and Evans 2015) Garcia-Gonzalez, F., Y. Yasui and J. P. Evans 2015 Mating portfolios: bet-hedging, sexual selection and female multiple mating Yes Yes Yes Yes No Data not suitable Experiments run alongside bet-hedging, perhaps confounding and not able to be placed alongside other studies in this meta-analysis
(L. Gay, Eady, et al. 2009) Gay, L., P. E. Eady, R. Vasudev, D. J. Hosken and T. Tregenza 2009 Does reproductive isolation evolve faster in larger populations via sexually antagonistic coevolution? Yes Yes No No 3 Generations of monoandry were replaced by polyandry (not done simultaneously ), Not sure whether the monogamous lines were maintained. This experiment was focussed on reproductive isolation anyway
(Gay et al. 2011) Gay, L., D. J. Hosken, P. Eady, R. Vasudev and T. Tregenza 2011 The Evolution of Harm-Effect of Sexual Conflicts and Population Size Yes Yes No No 3 Generations of monoandry were replaced by polyandry (not done simultaneously ), Not sure whether the monogamous lines were maintained. Also, did not directly look at SS+ vs SS-
(L. Gay, Hosken, et al. 2009) Gay, L., D. J. Hosken, R. Vasudev, T. Tregenza and P. E. Eady 2009 Sperm competition and maternal effects differentially influence testis and sperm size in Callosobruchus maculatus Yes Yes Yes Yes Yes Appears to be direct comparison bw monogamous and polygamous structures
(Grazer et al. 2014) Grazer, V. M., M. Demont, L. Michalczyk, M. J. G. Gage and O. Y. Martin 2014 Environmental quality alters female costs and benefits of evolving under enforced monogamy Yes Yes Yes Yes Yes Direct Measures of fitness in environments that had standard and sub-standard food quality
(Grieshop et al. 2016) Grieshop, K., J. Stangberg, I. Martinossi-Allibert, G. Arnqvist and D. Berger 2016 Strong sexual selection in males against a mutation load that reduces offspring production in seed beetles Yes Yes No No 3 Different mating systems/ opportunity for SS were not imposed
(Hall, Bussiere, and Brooks 2009) Hall, M. D., L. F. Bussiere and R. Brooks 2009 Diet-dependent female evolution influences male lifespan in a nuptial feeding insect Yes Yes No No 3 Different mating systems/ opportunity for SS were not imposed
(Hangartner et al. 2015) Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Experimental removal of sexual selection leads to decreased investment in an immune component in female Tribolium castaneum Yes Yes Yes Yes Yes
(Hangartner et al. 2013) Hangartner, S., S. H. Sbilordo, L. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Are there genetic trade-offs between immune and reproductive investments in Tribolium castaneum? Yes Yes Yes Yes Yes Different levels of SS, but none with enforced monogamy (no choice)
(Hicks, Hagenbuch, and Meffert 2004) Hicks, S. K., K. L. Hagenbuch and L. M. Meffert 2004 Variable costs of mating, longevity, and starvation resistance in Musca domestica (Diptera: Muscidae) Yes Yes No No 3 Study on environmental conditions not SS treatment
(Holland 2002) Holland, B. 2002 Sexual selection fails to promote adaptation to a new environment Yes Yes Yes Yes Yes Also looks at thermal stress
(Holland and Rice 1999) Holland, B. and W. R. Rice 1999 Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load Yes Yes Yes Yes Yes
(Hollis, Fierst, and Houle 2009) Hollis, B., J. L. Fierst and D. Houle 2009 Sexual Selection Accelerates the Elimination of a Deleterious Mutant in Drosophila Melanogaster Yes Yes Yes Yes Yes looked at the purging of a deleterious allele
(Hollis and Houle 2011) Hollis, B. and D. Houle 2011 Populations with elevated mutation load do not benefit from the operation of sexual selection Yes Yes Yes Yes Yes Mutagenesis took place and direct fitness measurements were made
(Hollis, Houle, and Kawecki 2016) Hollis, B., D. Houle and T. J. Kawecki 2016 Evolution of reduced post-copulatory molecular interactions in Drosophila populations lacking sperm competition Yes Yes Yes No No 4 Seminal fluid proteins have a fitness advantage in a polygamous setting, thus is favoured; perhaps this was a bit too ambiguous.
(Hollis et al. 2014) Hollis, B., D. Houle, Z. Yan, T. J. Kawecki and L. Keller 2014 Evolution under monogamy feminizes gene expression in Drosophila melanogaster Yes Yes Yes No No 4 Sex biased gene expression was measured, showing sexual antagonism. Would be stretched to consider it as a fitness measure.
(Hollis and Kawecki 2014) Hollis, B. and T. J. Kawecki 2014 Male cognitive performance declines in the absence of sexual selection Yes Yes Yes Yes Yes Cognitive ability measured in both male and female
(Hollis, Keller, and Kawecki 2017) Hollis, B., L. Keller and T. J. Kawecki 2017 Sexual selection shapes development and maturation rates in Drosophila Yes Yes Yes Yes Yes Development and fitness measured
(Hosken et al. 2009) Hosken, D. J., O. Y. Martin, S. Wigby, T. Chapman and D. J. Hodgson 2009 Sexual conflict and reproductive isolation in flies Yes Yes Yes No No 4 Reproductive isolation measured without fitness components
(House et al. 2013) House, C. M., Z. Lewis, D. J. Hodgson, N. Wedell, M. D. Sharma, J. Hunt and D. J. Hosken 2013 Sexual and Natural Selection Both Influence Male Genital Evolution Yes Yes Yes No No 4 Genitalia too complicated and hard to extract effect size
(Hunt et al. 2012) Hunt, J., R. R. Snook, C. Mitchell, H. S. Crudgington and A. J. Moore 2012 Sexual selection and experimental evolution of chemical signals in Drosophila pseudoobscura Yes Yes Yes No No 4 Body size measured as well as CHC, like other studies may confer fitness advantage
(Immonen, Snook, and Ritchie 2014) Immonen, E., R. R. Snook and M. G. Ritchie 2014 Mating system variation drives rapid evolution of the female transcriptome in Drosophila pseudoobscura Yes Yes Yes Yes Yes While transcriptome outcomes not exclusively measuring fitness they also measures aspects of fecundity
(Innocenti, Flis, and Morrow 2014) Innocenti, P., I. Flis and E. H. Morrow 2014 Female responses to experimental removal of sexual selection components in Drosophila melanogaster Yes Yes Yes Yes Yes To some extent the nature of SS treatment is unclear. Gene expression and fecundity are measured
(Jacomb, Marsh, and Holman 2016) Jacomb, F., J. Marsh and L. Holman 2016 Sexual selection expedites the evolution of pesticide resistance Yes Yes Yes Yes Yes Pesticide Resistance as an environmental condition that needs to be adapted to
(Janicke et al. 2016) Janicke, T., P. Sandner, S. A. Ramm, D. B. Vizoso and L. Schaerer 2016 Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm Yes No No 2b Hermaphroditic
(Jarzebowska and Radwan 2010) Jarzebowska, M. and J. Radwan 2010 Sexual Selection Counteracts Extinction of Small Populations of the Bulb Mites Yes Yes Yes Yes Yes Direct fitness measurements over several generations
(Klemme and Firman 2013) Klemme, I. and R. C. Firman 2013 Male house mice that have evolved with sperm competition have increased mating duration and paternity success Yes Yes Yes Yes Yes Paternity Success measured
(Long, Agrawal, and Rowe 2012) Long, T. A. F., A. F. Agrawal and L. Rowe 2012 The Effect of Sexual Selection on Offspring Fitness Depends on the Nature of Genetic Variation Yes Yes No No 3 No enforced SS regimes
(Lumley et al. 2015) Lumley, A. J., L. Michalczyk, J. J. N. Kitson, L. G. Spurgin, C. A. Morrison, J. L. Godwin, M. E. Dickinson, O. Y. Martin, B. C. Emerson, T. Chapman and M. J. G. Gage 2015 Sexual selection protects against extinction Yes Yes Yes Yes Yes Reproductive fitness and time to extinction measured
(MacLellan et al. 2012) MacLellan, K., L. Kwan, M. C. Whitlock and H. D. Rundle 2012 Dietary stress does not strengthen selection against single deleterious mutations in Drosophila melanogaster No No 1 Selection based experiment rather than experimental evolution
(MacLellan, Whitlock, and Rundle 2009) MacLellan, K., M. C. Whitlock and H. D. Rundle 2009 Sexual selection against deleterious mutations via variable male search success No No 1 Selection based experiment rather than experimental evolution
(Maklakov, Bonduriansky, and Brooks 2009) Maklakov, A. A., R. Bonduriansky and R. C. Brooks 2009 Sex Differences, Sexual Selection, and Ageing: An Experimental Evolution Approach Yes Yes Yes Yes Yes Life History traits of ageing were measured
(Maklakov and Fricke 2009) Maklakov, A. A. and C. Fricke 2009 Sexual selection did not contribute to the evolution of male lifespan under curtailed age at reproduction in a seed beetle Yes Yes Yes No No 4 Pseudoreplication to the above studies mut outcome metrics align less with the meta-analysis so we discard
(Maklakov, Fricke, and Arnqvist 2007) Maklakov, A. A., C. Fricke and G. Arnqvist 2007 Sexual selection affects lifespan and aging in the seed beetle Yes Yes Yes No No 4 Pseudoreplication to the above studies mut outcome metrics align less with the meta-analysis so we discard
(Mallet et al. 2011) Mallet, M. A., J. M. Bouchard, C. M. Kimber and A. K. Chippindale 2011 Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females Yes Yes No No 3 No SS+ and SS- treatments
(Mallet and Chippindale 2011) Mallet, M. A. and A. K. Chippindale 2011 Inbreeding reveals stronger net selection on Drosophila melanogaster males: implications for mutation load and the fitness of sexual females No No 1 Mutation levels analysed
(Martin and Hosken 2003) Martin, O. Y. and D. J. Hosken 2003 Costs and benefits of evolving under experimentally enforced polyandry or monogamy Yes Yes Yes Yes Yes Crossing took place after Gen 29, results still contain fitness components though
(Martin and Hosken 2004) Martin, O. Y. and D. J. Hosken 2004 Reproductive consequences of population divergence through sexual conflict Yes Yes Yes Yes Yes Crossing also took place, it should still be fine as they some populations were not crossed
(Matsuyama and Kuba 2009) Matsuyama, T. and H. Kuba 2009 Mating time and call frequency of males between mass-reared and wild strains of melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Yes Yes No No 3 Mate choice in different populations
(McGuigan, Petfield, and Blows 2011) McGuigan, K., D. Petfield and M. W. Blows 2011 REDUCING MUTATION LOAD THROUGH SEXUAL SELECTION ON MALES Yes Yes Yes Yes Yes The control line was not enforced monomagous (did not remove SS)., it was just a control where the population was mutagenised. No clear SS treatment as level of selection varied across the generations.
(McKean and Nunney 2008) McKean, K. A. and L. Nunney 2008 Sexual selection and immune function in Drosophila melanogaster Yes Yes Yes Yes Yes The control line was a 1:1 SR but not enforced monogamy
(McLain 1992) McLain, D. K. 1992 Population density and the intensity of sexual selection on body length in spatially or temporally restricted natural populations of a seed bug No No 1 Field study
(McNamara et al. 2016) McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Male-biased sex ratio does not promote increased sperm competitiveness in the seed beetle, Callosobruchus maculatus Yes Yes Yes Yes Yes No SS- (enforced monogamy) just altered SR
(McNamara, Lieshout, and Simmons 2014) McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 A test of the sexy-sperm and good-sperm hypotheses for the evolution of polyandry Yes Yes Yes Yes Yes Polygamy was still randomly done meaning post-cop SS is only available. Numorous measures of fitness conducted
(Meffert et al. 2006) Meffert, L. M., J. L. Regan, S. K. Hicks, N. Mukana and S. B. Day 2006 Testing alternative methods for purging genetic load using the housefly (Musca domestica L.) Yes Yes No No 3 No tsts of SS
(L. Michalczyk, Millard, Martin, Lumley, Emerson, Chapman, et al. 2011) Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson, T. Chapman and M. J. G. Gage 2011 Inbreeding Promotes Female Promiscuity Yes Yes No No 3 It does not appear the SS regimes were enforced (fig 1)
(L. Michalczyk, Millard, Martin, Lumley, Emerson, and Gage 2011) Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Experimental Evolution Exposes Female and Male Responses to Sexual Selection and Conflict in Tribolium Castaneum Yes Yes Yes Yes Yes No enforced monogamy (no SS-), but different OSR
(Morrow, Stewart, and Rice 2008) Morrow, E. H., A. D. Stewart and W. R. Rice 2008 Assessing the extent of genome-wide intralocus sexual conflict via experimentally enforced gender-limited selection Yes Yes No No 3 Not using different SS treatment lines
(Nandy et al. 2013) Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Sperm Competitive Ability Evolves in Response to Experimental Alteration of Operational Sex Ratio Yes Yes Yes Yes Yes Use an OSR of male and female bias
(Nandy et al. 2014) Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Experimental Evolution of Female Traits under Different Levels of Intersexual Conflict in Drosophila Melanogaster Yes Yes No Yes Yes Use an OSR of male and female bias
(Nelson et al. 2013) Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Rapid adaptation to mammalian sociality via sexually selected traits Yes Yes Yes Yes Yes 3 generations in mice with direct fitness outcomes
(Nie and Kaneshiro 2016) Nie, H. and K. Kaneshiro 2016 Sexual selection and incipient speciation in Hawaiian Drosophila No No 1 Artificial selection was conducted alongside mate choice
(Palopoli et al. 2015) Palopoli, M. F., C. Peden, C. Woo, K. Akiha, M. Ary, L. Cruze, J. L. Anderson and P. C. Phillips 2015 Natural and experimental evolution of sexual conflict within Caenorhabditis nematodes Yes No No 2b Hermaphroditic, also competition not SS was modulated
(Partridge 1980b) Partridge, L. 1980 Mate Choice Increases a Component of Offspring Fitness in Fruit-Flies Yes Yes Yes Yes Yes Competitive success from 1 generation of populations with and without mate choice
(Pélabon et al. 2014) Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 The effects of sexual selection on life-history traits: An experimental study on guppies Yes Yes Yes Yes Yes Direct and indirect outcomes
(Perry et al. 2016) Perry, J. C., R. Joag, D. J. Hosken, N. Wedell, J. Radwan and S. Wigby 2016 Experimental evolution under hyper-promiscuity in Drosophila melanogaster Yes Yes No No 3 SS was manipulated with sex peptide receptor (SPR) not enforced selection conditions
(Pischedda and Chippindale 2005) Pischedda, A. and A. Chippindale 2005 Sex, mutation and fitness: asymmetric costs and routes to recovery through compensatory evolution No No 1 Measures the effect of mutation in different populations
(Pischedda and Chippindale 2006) Pischedda, A. and A. K. Chippindale 2006 Intralocus sexual conflict diminishes the benefits of sexual selection No No 1 Focussed on fitness effects of conflict, not experimental evolution
(Pitnick, Brown, and Miller 2001) Pitnick, S., W. D. Brown and G. T. Miller 2001 Evolution of female remating behaviour following experimental removal of sexual selection Yes Yes Yes Yes Yes Body size and number of progeny measured. Not purpose of study though
(Pitnick et al. 2001) Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Males’ evolutionary responses to experimental removal of sexual selection Yes Yes Yes Yes Yes Male and population fitness outcomes measured
(Plesnar, Konior, and Radwan 2011) Plesnar, A., M. Konior and J. Radwan 2011 The role of sexual selection in purging the genome of induced mutations in the bulb mite (Rizoglyphus robini) Yes Yes Yes Yes Yes
(Plesnar-Bielak et al. 2013) Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop, M. Kolasa, M. Dzialo and J. Radwan 2013 No Evidence for Reproductive Isolation through Sexual Conflict in the Bulb Mite Rhizoglyphus robini Yes Yes Yes No No 4 Reproductive isolation measured without fitness components
(Plesnar-Bielak et al. 2012) Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop and J. Radwan 2012 Mating system affects population performance and extinction risk under environmental challenge Yes Yes Yes Yes Yes
(Power and Holman 2014) Power, D. J. and L. Holman 2014 Polyandrous females found fitter populations Yes Yes Yes Yes Yes Remating was presented to the females 72 hours after first mating. Measuring effects of polyandry, thus multiple mating has more of an effect. Post copulatory selection will take place though.
(Power and Holman 2015) Power, D. J. and L. Holman 2015 Assessing the alignment of sexual and natural selection using radiomutagenized seed beetles Yes Yes Yes Yes Yes Experiment 2 Measures affect of SS
(Price, Hurst, and Wedell 2010b) Price, T. A. R., G. D. D. Hurst and N. Wedell 2010 Polyandry Prevents Extinction Yes Yes No No 3 Appears that individuals that only mated once still had a choice, post cop SS would be enacted then. Interested in mating freq over choice
(Prokop et al. 2017) Prokop, Z. M., M. A. Prus, T. S. Gaczorek, K. Sychta, J. K. Palka, A. Plesnar-Bielak and M. Skarbon 2017 Do males pay for sex? Sex-specific selection coefficients suggest not No No 1 SS was estimated using models: not enforced in experimental evolution
(Promislow, Smith, and Pearse 1998) Promislow, D. E. L., E. A. Smith and L. Pearse 1998 Adult fitness consequences of sexual selection in Drosophila melanogaster Yes Yes Yes Yes Yes
(Radwan 2004) Radwan, J. 2004 Effectiveness of sexual selection in removing mutations induced with ionizing radiation Yes Yes Yes Yes Yes Fitness outcomes measured
(Radwan et al. 2004) Radwan, J., J. Unrug, K. Snigorska and K. Gawronska 2004 Effectiveness of sexual selection in preventing fitness deterioration in bulb mite populations under relaxed natural selection Yes Yes Yes Yes Yes Fitness outcomes measured
(Rundle, Chenoweth, and Blows 2006) Rundle, H. D., S. F. Chenoweth and M. W. Blows 2006 The roles of natural and sexual selection during adaptation to a novel environment Yes Yes Yes Yes Yes Fitness outcomes measured
(Rundle, Chenoweth, and Blows 2009) Rundle, H. D., S. F. Chenoweth and M. W. Blows 2009 The diversification of mate preferences by natural and sexual selection Yes Yes Yes No No 4 CHCs / mate preference outcome measured alongside natural selection. CHCs not used in this meta-analysis
(Rundle, Odeen, and Mooers 2007) Rundle, H. D., A. Odeen and A. O. Mooers 2007 An experimental test for indirect benefits in Drosophila melanogaster Yes Yes No No 3 Between studs and duds not SS+ / SS-
(Savic Veselinovic et al. 2013b) Savic Veselinovic, M., S. Pavkovic-Lucic, Z. Kurbalija Novicic, M. Jelic and M. Andelkovic 2013 Sexual Selection Can Reduce Mutational Load in Drosophila Subobscura Yes Yes Yes Yes No Data not suitable Irradiated and direct fitness outcomes measured: However when extracting data there were no sample sizes presented so we excluded the study as author did not respond to email
(Seslija, Marecko, and Tucic 2008) Seslija, D., I. Marecko and N. Tucic 2008 Sexual selection and senescence: Do seed beetle males (Acanthoscelides obtectus, Bruchidae, Coleoptera) shape the longevity of their mates? Yes Yes No No 3 While there is monoandrous lines, these lines were not enforced and choice still existed. Put post-cop choice may be stronger in other lines. This is a strange setup and may be hard to compare with other studies
(Sharma, Hunt, and Hosken 2012) Sharma, M. D., J. Hunt and D. J. Hosken 2012 Antagonistic Responses to Natural and Sexual Selection and the Sex-Specific Evolution of Cuticular Hydrocarbons in Drosophila Simulans Yes Yes Yes No No 4 CHCs / mate preference outcome measured alongside natural selection
(Sharp and Agrawal 2008) Sharp, N. P. and A. F. Agrawal 2008 Mating density and the strength of sexual selection against deleterious alleles in Drosophila melanogaster No No 1 One generation w/ gene freq. Also no enforced monogamy
(Sharp and Agrawal 2009) Sharp, N. P. and A. F. Agrawal 2009 Sexual Selection and the Random Union of Gametes: Testing for a Correlation in Fitness between Mates in Drosophila melanogaster No No 1 Assortive mating study
(Simmons and Firman 2014) Simmons, L. W. and R. C. Firman 2014 Experimental Evidence for the Evolution of the Mammalian Baculum by Sexual Selection Yes Yes Yes No No 4 States that “Far less is known of the fitness consequences of variation in baculum morphology for mammals.” - No direct link with fitness advantage. Genital morphology not used in this meta-analysis
(Simmons and Garcia-Gonzalez 2008) Simmons, L. W. and F. Garcia-Gonzalez 2008 Evolutionary Reduction in Testes Size and Competitive Fertilization Success in Response to the Experimental Removal of Sexual Selection in Dung Beetles Yes Yes Yes Yes Yes Fitness outcomes measured
(Simmons and Garcia-Gonzalez 2011) Simmons, L. W. and F. Garcia-Gonzalez 2011 Experimental coevolution of male and female genital morphology Yes Yes Yes No No 4 Genital morphology has conflicting fitness outcomes for males and females, not used in this meta-analysis
(Simmons et al. 2009) Simmons, L. W., C. M. House, J. Hunt and F. Garcia-Gonzalez 2009 Evolutionary Response to Sexual Selection in Male Genital Morphology Yes Yes Yes No No 4 Genital Morphology not used in this meta-analysis
(Snook et al. 2013) Snook, R. R., N. A. Gidaszewski, T. Chapman and L. W. Simmons 2013 Sexual selection and the evolution of secondary sexual traits: sex comb evolution in Drosophila Yes Yes Yes No No 4 In D. pseudo monogamy was enforced. Sex combs are cited as having positive fitness effects at high and low numbers. Would not give an accurate representation of a fitness comparison
(Tilszer et al. 2006) Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Evolution under relaxed sexual conflict in the bulb mite Rhizoglyphus robini Yes Yes Yes Yes Yes
(Lieshout, McNamara, and Simmons 2014) van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Rapid Loss of Behavioral Plasticity and Immunocompetence under Intense Sexual Selection Yes Yes Yes Yes Yes Did not use enforced monogamy but had different operational sex ratio
(Whitlock and Bourguet 2000) Whitlock, M. C. and D. Bourguet 2000 Factors affecting the genetic load in Drosophila: Synergistic epistasis and correlations among fitness components Yes Yes No No 3 No manipulation of sexual selection
(Wigby and Chapman 2004) Wigby, S. and T. Chapman 2004 Female resistance to male harm evolves in response to manipulation of sexual conflict Yes Yes Yes Yes Yes Did not use enforced monogamy but had different sex ratio


Data Extraction and Effect Size Calculation

The rules utilised during the data extraction and effect size calculation were as follows:

  1. Arithmatic means, standard deviations/errors and sample sizes were extracted from a paper, supplementary material or a linked data repository (e.g. Data Dryad). This was possible when means and SD were reported in text or in a table. We would preferentially extract data for each experimental evolution line/replicat/family if possible and only extract data for the final reported generation (which was noted down).

  2. If we could not find the means and SD in text format we used web-plot digitizer (v.3.12) to extract data from graphs.

  3. If means were not reported then we extracted a summary statistic or proportion value, which we could later convert to Hedges g’ using the compute.es package (Re 2013). Summary statistics included F, z, t and chi2. These conversions still required providing sample sizes for each treatment so these needed to be extractable from the study. Some summary statistics were obtained from generalized linear model summary tabels, others from straight forward ANOVAs and then some from more complex analysis such as proportional hazards statistical tests.

  4. We also collected various covariates for some of the studies (see source data), which are discussed later.


The Effect Size Dataset

Table of Effect Sizes

Source Data Table of effect sizes included in our meta-analysis. See the text following the table for an explanation of each column.

# Load the data and format the variables
full_dataset <- read.csv('data/meta_analysis_dataset.csv') %>%
  mutate(Study.ID = factor(Study.ID),
         Group.ID = factor(Group.ID),
         Environment = relevel(factor(Environment), ref = "Unstressed"),
         Outcome.Class = relevel(factor(Outcome.Class), ref = "Indirect"),
         Pre.cop = relevel(factor(Pre.cop), ref = "0"),
         Post.cop = relevel(factor(Post.cop), ref = "0"),
         Blinding = factor(Blinding))



kable(full_dataset, "html") %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "500px")
Study.ID Group.ID AuthorYear Outcome Environment Group.ID.1 Authors Year Species Taxon SS.density.high.to.low SS.ratio.high SS.density.high Pre.cop Post.cop Blinding Generations Enforced.Monogamy n Sex Ambiguous Outcome.Class g var.g Positive.Fitness mean.low sd.low n.low mean.high sd.high n.high JIF
1 37 Almbro 2014 Strength Stressed 37 Almbro, M. and L. W. Simmons 2014 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 3 YES 182 M NO Indirect 0.385 0.022 1 0.0470000 0.0572364 91 0.0940000 0.1621697 91 4.612
1 37 Almbro 2014 Strength Unstressed 37 Almbro, M. and L. W. Simmons 2014 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 3 YES 182 M NO Indirect 0.000 0.022 1 0.1170000 0.1717091 91 0.1170000 0.1717091 91 4.612
1 37 Almbro 2014 Ejaculate Quality and Production Stressed 37 Almbro, M. and L. W. Simmons 2014 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 3 YES 222 M NO Indirect 0.172 0.018 1 1.8920000 0.9060662 111 2.0510000 0.9376732 111 4.612
1 37 Almbro 2014 Ejaculate Quality and Production Unstressed 37 Almbro, M. and L. W. Simmons 2014 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 3 YES 222 M NO Indirect 0.204 0.018 1 2.1900000 0.9692801 111 2.3820000 0.9060662 111 4.612
1 37 Almbro 2014 Female Reproductive Success Not Stated 37 Almbro, M. and L. W. Simmons 2014 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 2 YES 414 F NO Direct 0.258 0.010 1 15.4000000 10.0712462 207 18.0000000 10.0712462 207 4.612
2 14 Arbuthnott 2012 Mutant Frequency Stressed 14 Arbuthnott, D. and H. D. Rundle 2012 Drosophila melanogaster Fly 60.000 1.00 120.00 1 1 Not Blind 7 YES 400 B NO Indirect -0.011 0.010 -1 NA NA NA NA NA NA 4.864
2 14 Arbuthnott 2012 Mutant Frequency Stressed 14 Arbuthnott, D. and H. D. Rundle 2012 Drosophila melanogaster Fly 60.000 1.00 120.00 1 1 Not Blind 7 YES 400 B NO Indirect 0.434 0.010 -1 NA NA NA NA NA NA 4.864
2 14 Arbuthnott 2012 Mutant Frequency Stressed 14 Arbuthnott, D. and H. D. Rundle 2012 Drosophila melanogaster Fly 60.000 1.00 120.00 1 1 Not Blind 7 YES 400 B NO Indirect -0.064 0.010 -1 NA NA NA NA NA NA 4.864
2 14 Arbuthnott 2012 Mutant Frequency Stressed 14 Arbuthnott, D. and H. D. Rundle 2012 Drosophila melanogaster Fly 60.000 1.00 120.00 1 1 Not Blind 7 YES 400 B NO Indirect -0.037 0.010 -1 NA NA NA NA NA NA 4.864
2 14 Arbuthnott 2012 Mutant Frequency Stressed 14 Arbuthnott, D. and H. D. Rundle 2012 Drosophila melanogaster Fly 60.000 1.00 120.00 1 1 Not Blind 7 YES 400 B NO Indirect -0.129 0.010 -1 NA NA NA NA NA NA 4.864
2 14 Arbuthnott 2012 Mutant Frequency Stressed 14 Arbuthnott, D. and H. D. Rundle 2012 Drosophila melanogaster Fly 60.000 1.00 120.00 1 1 Not Blind 7 YES 400 B NO Indirect 0.032 0.010 -1 NA NA NA NA NA NA 4.864
3 35 Archer 2015 Lifespan Stressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 M NO Indirect -0.971 0.005 1 30.5200000 5.9396970 450 24.2100000 7.0003571 450 5.210
3 35 Archer 2015 Lifespan Stressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 F NO Indirect -0.154 0.004 1 34.2800000 26.9407684 450 31.3200000 4.0305087 450 5.210
3 35 Archer 2015 Fitness Senescence Stressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 M NO Indirect 0.074 0.004 -1 3.6300000 1.2727922 450 3.4300000 3.6062446 450 5.210
3 35 Archer 2015 Fitness Senescence Stressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 F NO Indirect -0.087 0.004 -1 3.9200000 1.4849242 450 4.3500000 6.7882251 450 5.210
3 35 Archer 2015 Offspring Viability Stressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 M NO Direct -0.868 0.005 -1 0.0295858 0.0063640 450 0.0372000 0.0106066 450 5.210
3 35 Archer 2015 Offspring Viability Stressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 F NO Direct -0.148 0.004 -1 0.0264000 0.0254558 450 0.0291000 0.0042426 450 5.210
3 35 Archer 2015 Lifespan Unstressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 M NO Indirect -0.780 0.005 1 35.5500000 11.0308658 450 26.9400000 11.0308658 450 5.210
3 35 Archer 2015 Lifespan Unstressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 F NO Indirect -0.146 0.004 1 34.2800000 26.9407684 450 30.1900000 28.8499567 450 5.210
3 35 Archer 2015 Fitness Senescence Unstressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 M NO Indirect 0.021 0.004 -1 4.5000000 6.1518290 450 4.3300000 9.9702056 450 5.210
3 35 Archer 2015 Fitness Senescence Unstressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 F NO Indirect -0.038 0.004 -1 4.8200000 5.9396970 450 5.1500000 10.8187337 450 5.210
3 35 Archer 2015 Offspring Viability Unstressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 M NO Direct -0.259 0.004 -1 0.0258000 0.0424264 450 0.0339000 0.0127279 450 5.210
3 35 Archer 2015 Offspring Viability Unstressed 35 Archer, C. R., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma and J. Hunt 2015 Drosophila simulans Fly 2.500 4.00 5.00 1 1 Not Blind 45 YES 900 F NO Direct -0.176 0.004 -1 0.0267000 0.0169706 450 0.0305000 0.0254558 450 5.210
5 1 Bernasconi 2001 Male Reproductive Success Unstressed 1 Bernasconi, G. and L. Keller 2001 Tribolium castaneum Beetle 2.000 3.00 4.00 0 1 Not Blind 3 YES 20 M YES Ambiguous 1.533 0.242 1 0.5600000 0.3600000 10 0.9700000 0.0400000 10 2.673
5 1 Bernasconi 2001 Female Reproductive Success Unstressed 1 Bernasconi, G. and L. Keller 2001 Tribolium castaneum Beetle 2.000 3.00 4.00 0 1 Not Blind 3 YES 20 F NO Direct -0.123 0.184 1 63.0000000 27.0000000 10 60.0000000 19.0000000 10 2.673
6 15 Brommer 2012 Both Reproductive Success Unstressed 15 Brommer, J. E., C. Fricke, D. A. Edward and T. Chapman 2012 Drosophila melanogaster Fly 1.500 2.00 3.00 0 1 Not Blind 4 YES 93 B NO Direct -0.378 0.043 1 1.0000000 0.3316625 44 0.8700000 0.3500000 49 4.864
7 29 Crudgington 2005 Female Reproductive Success Stressed 29 Crudgington, H. S., A. P. Beckerman, L. Br_stle, K. Green and R. R. Snook 2005 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 21 YES 200 F NO Direct -0.216 0.020 1 76.9000000 47.0000000 100 66.4000000 50.0000000 100 4.464
7 29 Crudgington 2005 Female Reproductive Success Stressed 29 Crudgington, H. S., A. P. Beckerman, L. Br_stle, K. Green and R. R. Snook 2005 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 28 YES 200 F NO Direct 0.280 0.020 1 120.6000000 119.0000000 100 153.6000000 116.0000000 100 4.464
7 29 Crudgington 2005 Offspring Viability Stressed 29 Crudgington, H. S., A. P. Beckerman, L. Br_stle, K. Green and R. R. Snook 2005 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 28 YES 200 F NO Direct 0.365 0.045 1 NA NA NA NA NA NA 4.464
7 29 Crudgington 2005 Female Reproductive Success Unstressed 29 Crudgington, H. S., A. P. Beckerman, L. Br_stle, K. Green and R. R. Snook 2005 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 21 YES 200 F NO Direct -0.244 0.020 1 108.5000000 44.0000000 100 97.9000000 43.0000000 100 4.464
7 29 Crudgington 2005 Female Reproductive Success Unstressed 29 Crudgington, H. S., A. P. Beckerman, L. Br_stle, K. Green and R. R. Snook 2005 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 28 YES 200 F NO Direct 0.281 0.020 1 164.1000000 119.0000000 100 197.5000000 119.0000000 100 4.464
7 29 Crudgington 2005 Offspring Viability Unstressed 29 Crudgington, H. S., A. P. Beckerman, L. Br_stle, K. Green and R. R. Snook 2005 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 28 YES 200 F NO Direct -0.311 0.155 1 NA NA NA NA NA NA 4.464
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 62 YES 10 M NO Indirect -0.168 0.184 1 15.7249071 1.9984654 10 15.3903346 1.7633519 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 61 YES 10 M NO Indirect -0.576 0.192 1 15.3903346 2.1160222 10 14.3122677 1.4106815 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 60 YES 10 M NO Indirect 1.311 0.226 1 15.0185874 1.0580111 10 16.3940520 0.9404543 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 58 YES 10 M NO Indirect 0.512 0.190 1 15.7992565 1.6457951 10 16.6542751 1.5282383 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 62 YES 10 M NO Indirect 1.373 0.231 1 15.7249071 1.9984654 10 18.0669145 1.1755679 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 61 YES 10 M NO Indirect 1.190 0.219 1 15.3903346 2.1160222 10 17.6208178 1.4106815 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 60 YES 10 M NO Indirect 1.305 0.226 1 15.0185874 1.0580111 10 17.1003718 1.8809086 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 58 YES 10 M NO Indirect 1.928 0.276 1 15.7992565 1.6457951 10 18.5873606 1.0580111 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 62 NO 10 M NO Indirect 1.713 0.257 1 15.3903346 1.7633519 10 18.0700000 1.1755679 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 61 NO 10 M NO Indirect 2.248 0.310 1 14.3122677 1.4106815 10 17.6200000 1.4106815 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 60 NO 10 M NO Indirect 0.458 0.189 1 16.3940520 0.9404543 10 17.1000000 1.8809086 10 5.429
8 29 Crudgington 2009 Mating Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 58 NO 10 M NO Indirect 1.414 0.233 1 16.6542751 1.5282383 10 18.5900000 1.0580111 10 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 60 YES 20 M YES Ambiguous 0.060 0.096 1 622.3853211 367.6177813 20 642.9357798 301.9717489 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 59 YES 20 M YES Ambiguous -0.089 0.096 1 760.3669725 407.0054007 20 733.9449541 354.4885748 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 57 YES 20 M YES Ambiguous -0.214 0.097 1 728.0733945 407.0054007 20 648.8073394 315.1009554 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 60 YES 20 M YES Ambiguous 0.515 0.099 1 622.4000000 367.6177800 20 819.0825688 380.7469877 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 59 YES 20 M YES Ambiguous 0.768 0.103 1 760.4000000 407.0054000 20 1200.7339450 682.7187366 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 57 YES 20 M YES Ambiguous 1.068 0.110 1 728.1000000 407.0054000 20 1150.8256880 367.6177813 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 60 NO 20 M YES Ambiguous 0.503 0.099 1 642.9357798 301.9717489 20 819.0825688 380.7469877 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 59 NO 20 M YES Ambiguous 0.841 0.105 1 733.9449541 354.4885748 20 1200.7339450 682.7187366 20 5.429
8 29 Crudgington 2009 Male Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows, N. S. Badcock and R. R. Snook 2009 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 57 NO 20 M YES Ambiguous 1.437 0.122 1 648.8073394 315.1009554 20 1150.8256880 367.6177813 20 5.429
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 55 YES 18 F YES Ambiguous -0.861 0.111 1 237.3000000 55.0072700 20 169.5000000 95.8836795 18 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 54 YES 18 F YES Ambiguous -0.655 0.118 1 210.6000000 67.6189300 17 170.5000000 50.7141992 17 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 55 YES 18 F YES Ambiguous 0.026 0.123 1 NA NA NA NA NA NA 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 54 YES 18 F YES Ambiguous 0.360 0.140 1 NA NA NA NA NA NA 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 55 YES 18 F YES Ambiguous -1.447 0.132 1 237.3000000 55.0072700 20 150.0000000 63.4958266 17 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 54 YES 18 F YES Ambiguous -0.739 0.114 1 210.6000000 67.6189300 17 154.1000000 80.6396305 19 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 55 YES 18 F YES Ambiguous 0.620 0.160 1 NA NA NA NA NA NA 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 54 YES 18 F YES Ambiguous 0.450 0.140 1 NA NA NA NA NA NA 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 55 NO 18 F YES Ambiguous -0.233 0.110 1 169.5000000 95.8836795 18 150.0000000 63.4958266 17 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 54 NO 18 F YES Ambiguous -0.235 0.107 1 170.5000000 50.7141992 17 154.1000000 80.6396305 19 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 55 NO 18 F YES Ambiguous 0.590 0.160 1 NA NA NA NA NA NA 3.636
9 29 Crudgington 2010 Early Fecundity Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 54 NO 18 F YES Ambiguous 0.080 0.150 1 NA NA NA NA NA NA 3.636
9 29 Crudgington 2010 Female Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 55 YES 18 F NO Direct -0.520 0.105 1 500.3000000 174.4133000 20 403.8000000 261.3466663 18 3.636
9 29 Crudgington 2010 Female Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 2.000 3.00 4.00 1 1 Not Blind 54 YES 18 F NO Direct -0.843 0.123 1 474.7000000 195.0229000 17 315.4000000 173.5827468 17 3.636
9 29 Crudgington 2010 Female Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 55 YES 18 F NO Direct -0.796 0.188 1 403.8000000 261.3466663 18 228.1000000 152.5549081 17 3.636
9 29 Crudgington 2010 Female Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 54 YES 18 F NO Direct -1.065 0.122 1 474.7000000 195.0229000 17 266.1000000 188.3044344 19 3.636
9 29 Crudgington 2010 Female Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 55 NO 18 F NO Direct -1.616 0.139 1 500.3000000 174.4133000 20 228.1000000 152.5549081 17 3.636
9 29 Crudgington 2010 Female Reproductive Success Unstressed 29 Crudgington, H. S., S. Fellows and R. R. Snook 2010 Drosophila pseudoobscura Fly 1.750 6.00 7.00 1 1 Not Blind 54 NO 18 F NO Direct -0.266 0.108 1 315.4000000 173.5827468 17 266.1000000 188.3044344 19 3.636
10 29 Debelle 2016 Body Size Unstressed 29 Debelle, A., M. G. Ritchie and R. R. Snook 2016 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 98 YES 2038 M YES Ambiguous 0.555 0.002 1 2.2200000 0.0730000 1019 2.2600000 0.0710000 1019 2.792
10 29 Debelle 2016 Body Size Unstressed 29 Debelle, A., M. G. Ritchie and R. R. Snook 2016 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 98 YES 2038 F YES Ambiguous 0.111 0.002 1 2.4500000 0.0820000 1019 2.4600000 0.0980000 1019 2.792
10 29 Debelle 2016 Mating Success Unstressed 29 Debelle, A., M. G. Ritchie and R. R. Snook 2016 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 98 YES 2038 M NO Indirect -0.663 0.004 1 NA NA NA NA NA NA 2.792
10 29 Debelle 2016 Mating Success Unstressed 29 Debelle, A., M. G. Ritchie and R. R. Snook 2016 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 98 YES 2038 M NO Indirect -0.655 0.004 1 NA NA NA NA NA NA 2.792
10 29 Debelle 2016 Mating Latency Unstressed 29 Debelle, A., M. G. Ritchie and R. R. Snook 2016 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 98 YES 2038 M YES Indirect -0.197 0.002 -1 126.5000000 15.8000000 1019 129.4000000 13.5000000 1019 2.792
10 29 Debelle 2016 Mating Latency Unstressed 29 Debelle, A., M. G. Ritchie and R. R. Snook 2016 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 98 YES 2038 M YES Indirect 2.486 0.003 -1 153.8000000 19.7000000 1019 113.6000000 11.6000000 1019 2.792
11 2 Demont 2014 Female Reproductive Success Stressed 2 Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 36 YES 38 F NO Direct 1.810 0.144 1 91.7000000 9.4400000 19 105.7700000 5.1700000 19 2.606
11 2 Demont 2014 Female Reproductive Success Unstressed 2 Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 36 YES 38 F NO Direct 0.299 0.102 1 93.9700000 21.3500000 19 101.2400000 26.0600000 19 2.606
11 2 Demont 2014 Male Reproductive Success Unstressed 2 Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 36 YES 24 M YES Ambiguous 0.222 0.156 1 106.8500000 6.2000000 12 108.6500000 9.2000000 12 2.606
11 2 Demont 2014 Male Reproductive Success Unstressed 2 Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 36 YES 24 M YES Ambiguous 0.279 0.209 1 NA NA NA NA NA NA 2.606
11 2 Demont 2014 Offspring Viability Unstressed 2 Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 36 YES 44 F NO Direct 0.415 0.090 1 24.0000000 8.9442719 20 27.0000000 4.8989795 24 2.606
11 2 Demont 2014 Offspring Viability Unstressed 2 Demont, M., V. M. Grazer, L. Michalczyk, A. L. Millard, S. H. Sbilordo, B. C. Emerson, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 36 YES 45 M NO Direct 0.407 0.088 1 23.0000000 9.3808315 22 26.0000000 4.7958315 23 2.606
12 16 Edward 2010 Mating Latency Stressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 M NO Indirect 0.324 0.020 -1 6.5230000 5.4190000 102 5.0170000 3.6600000 102 8.090
12 16 Edward 2010 Mating Duration Stressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 M NO Ambiguous 0.219 0.020 1 11.9500000 2.9810000 102 12.6440000 3.3310000 102 8.090
12 16 Edward 2010 Mating Latency Unstressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 M NO Indirect -0.099 0.019 -1 5.5121951 3.5893711 102 5.8885017 3.9412702 102 8.090
12 16 Edward 2010 Mating Duration Unstressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 M NO Ambiguous 0.393 0.020 1 9.1892361 2.5424101 102 10.4565972 3.7697805 102 8.090
12 16 Edward 2010 Female Reproductive Success Stressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 F NO Direct 0.070 0.019 1 72.3810000 35.0550000 102 74.8857645 35.9428779 102 8.090
12 16 Edward 2010 Female Reproductive Success Stressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 F NO Direct 0.015 0.019 1 0.6410000 0.5090000 102 0.6491071 0.5545710 102 8.090
12 16 Edward 2010 Male Reproductive Success Stressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 M YES Ambiguous 0.001 0.019 1 0.7750000 0.6600000 102 0.7759516 0.7391160 102 8.090
12 16 Edward 2010 Female Reproductive Success Unstressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 F NO Direct -0.312 0.020 1 81.9595782 34.6116602 102 71.0632689 35.0553994 102 8.090
12 16 Edward 2010 Female Reproductive Success Unstressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 F NO Direct 0.099 0.019 1 0.5946429 0.5004665 102 0.6446429 0.5049752 102 8.090
12 16 Edward 2010 Male Reproductive Success Unstressed 16 Edward, D. A., C. Fricke and T. Chapman 2010 Drosophila melanogaster Fly 0.760 75.00 76.00 1 1 Not Blind 70 NO 204 M YES Ambiguous 0.049 0.019 1 0.7157439 0.6919384 102 0.7510381 0.7495999 102 8.090
13 6 Firman 2011a Female Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 F NO Direct 0.396 0.080 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Female Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 F NO Direct -1.258 0.114 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Female Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 F NO Direct -0.352 0.076 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Female Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 F NO Direct 1.316 0.146 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Male Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 M YES Ambiguous 1.196 0.132 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Male Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 M YES Ambiguous 1.142 0.104 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Male Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 M YES Ambiguous 0.131 0.072 1 NA NA NA NA NA NA 3.248
13 6 Firman 2011a Male Reproductive Success Stressed 6 Firman, R. C. 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 16 YES 63 M YES Ambiguous 1.747 0.360 1 NA NA NA NA NA NA 3.248
14 6 Firman 2011a Male Attractiveness Unstressed 6 Firman, R. C. 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 25 YES 30 M YES Ambiguous -1.177 0.149 1 NA NA NA NA NA NA 3.248
15 6 Firman 2011b Ejaculate Quality and Production Not Stated 6 Firman, R. C., L. Y. Cheam and L. W. Simmons 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 8 YES 54 M NO Indirect 0.303 0.073 1 NA NA NA NA NA NA 3.276
15 6 Firman 2011b Ejaculate Quality and Production Not Stated 6 Firman, R. C., L. Y. Cheam and L. W. Simmons 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 8 YES 54 M NO Indirect 1.844 0.105 1 NA NA NA NA NA NA 3.276
16 6 Firman 2015 Ejaculate Quality and Production Not Stated 6 Firman, R. C., F. Garcia-Gonzalez, E. Thyer, S. Wheeler, Z. Yamin, M. Yuan and L. W. Simmons 2015 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Blind 18 YES 60 M NO Indirect 1.003 0.073 1 0.7010000 0.0492950 30 0.7470000 0.0438178 30 4.007
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 88 F NO Direct -0.963 0.068 1 NA NA NA NA NA NA 3.832
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 41 F NO Direct -1.733 0.349 1 NA NA NA NA NA NA 3.832
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 78 F NO Direct -1.717 0.111 1 NA NA NA NA NA NA 3.832
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 55 F NO Direct -0.974 0.115 1 NA NA NA NA NA NA 3.832
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 86 F NO Direct -0.599 0.102 1 NA NA NA NA NA NA 3.832
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 55 F NO Direct -0.904 0.159 1 NA NA NA NA NA NA 3.832
17 6 Firman 2014b Female Reproductive Success Not Stated 6 Firman, R. C., M. Gomendio, E. R. S. Roldan and L. W. Simmons 2014 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 24 YES 36 F NO Direct -0.504 0.199 1 NA NA NA NA NA NA 3.832
18 6 Firman 2010 Ejaculate Quality and Production Not Stated 6 Firman, R. C. and L. W. Simmons 2010 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 8 YES 144 M NO Indirect 0.399 0.026 1 NA NA NA NA NA NA 3.521
18 6 Firman 2010 Female Reproductive Success Stressed 6 Firman, R. C. and L. W. Simmons 2010 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 7 YES 40 F NO Direct -0.564 0.100 1 17.5500000 5.4112845 20 14.4500000 5.3665631 20 3.521
18 6 Firman 2010 Female Reproductive Success Unstressed 6 Firman, R. C. and L. W. Simmons 2010 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 7 YES 40 F NO Direct -0.328 0.097 1 16.1500000 4.1143651 20 14.5500000 5.3665631 20 3.521
18 6 Firman 2010 Female Reproductive Success Not Stated 6 Firman, R. C. and L. W. Simmons 2010 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 10 YES 144 F NO Direct 0.668 0.029 1 NA NA NA NA NA NA 3.521
18 6 Firman 2010 Body Size Not Stated 6 Firman, R. C. and L. W. Simmons 2010 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 8 YES 128 B NO Ambiguous -0.364 0.031 1 NA NA NA NA NA NA 3.521
19 6 Firman 2010 Male Reproductive Success Stressed 6 Firman, R. C. and L. W. Simmons 2011 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 12 YES 128 M YES Ambiguous -1.008 0.035 1 NA NA NA NA NA NA 3.521
20 6 Firman 2010 Female Reproductive Success Unstressed 6 Firman, R. C. and L. W. Simmons 2012 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 15 YES 144 F NO Direct 0.784 0.030 1 4.9400000 2.2910260 72 6.6500000 2.0364675 72 3.521
20 6 Firman 2010 Female Reproductive Success Unstressed 6 Firman, R. C. and L. W. Simmons 2012 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 15 YES 128 F NO Direct -0.213 0.031 1 NA NA NA NA NA NA 3.521
20 6 Firman 2010 Female Reproductive Success Unstressed 6 Firman, R. C. and L. W. Simmons 2012 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 15 YES 128 F NO Direct 0.416 0.032 1 NA NA NA NA NA NA 3.521
20 6 Firman 2010 Offspring Viability Unstressed 6 Firman, R. C. and L. W. Simmons 2012 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 15 YES 128 B NO Direct 0.014 0.031 1 NA NA NA NA NA NA 3.521
20 6 Firman 2010 Offspring Viability Unstressed 6 Firman, R. C. and L. W. Simmons 2012 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 15 YES 128 B NO Direct 0.408 0.032 1 NA NA NA NA NA NA 3.521
22 9 Fricke 2007 Body Size Not Stated 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 155 F YES Ambiguous 0.080 0.026 1 0.0011635 0.0001053 77 0.0011720 0.0001073 78 4.502
22 9 Fricke 2007 Body Size Not Stated 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 155 M YES Ambiguous 0.102 0.026 1 0.0009178 0.0000963 77 0.0009283 0.0001084 77 4.502
22 9 Fricke 2007 Development Rate Stressed 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 76 B NO Ambiguous -0.453 0.053 1 0.8289099 0.0286151 38 0.8135570 0.0377825 38 4.502
22 9 Fricke 2007 Development Rate Unstressed 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 79 B NO Ambiguous 0.772 0.053 1 0.8251609 0.0378719 39 0.8534363 0.0346177 40 4.502
22 9 Fricke 2007 Female Reproductive Success Stressed 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 76 F NO Direct -0.579 0.054 1 419.3947368 34.3546995 38 397.4210526 40.5573545 38 4.502
22 9 Fricke 2007 Female Reproductive Success Unstressed 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 79 F NO Direct 0.185 0.050 1 292.2051282 55.6900159 39 301.0500000 37.3678526 40 4.502
22 9 Fricke 2007 Offspring Viability Stressed 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 76 F NO Direct -0.476 0.053 1 0.5462428 0.0780889 38 0.5107408 0.0691831 38 4.502
22 9 Fricke 2007 Offspring Viability Unstressed 9 Fricke, C. and G. Arnqvist 2007 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 35 YES 79 F NO Direct 0.543 0.052 1 0.4180605 0.0784570 39 0.4575765 0.0652579 40 4.502
23 7 Fritzsche 2016 Male Reproductive Success Not Stated 7 Fritzsche, K., I. Booksmythe and G. Arnqvist 2016 Megabruchidius dorsalis Beetle 1.000 5.00 150.00 1 1 Blind 20 NO 1200 M YES Ambiguous -0.056 0.003 1 NA NA NA NA NA NA 8.851
23 7 Fritzsche 2016 Female Reproductive Success Not Stated 7 Fritzsche, K., I. Booksmythe and G. Arnqvist 2016 Megabruchidius dorsalis Beetle 1.000 5.00 150.00 1 1 Blind 20 NO 1200 F NO Direct -0.031 0.003 1 NA NA NA NA NA NA 8.851
23 7 Fritzsche 2016 Lifespan Not Stated 7 Fritzsche, K., I. Booksmythe and G. Arnqvist 2016 Megabruchidius dorsalis Beetle 1.000 5.00 150.00 1 1 Blind 20 NO 1200 M NO Indirect -0.066 0.003 1 NA NA NA NA NA NA 8.851
23 7 Fritzsche 2016 Lifespan Not Stated 7 Fritzsche, K., I. Booksmythe and G. Arnqvist 2016 Megabruchidius dorsalis Beetle 1.000 5.00 150.00 1 1 Blind 20 NO 1200 F NO Indirect -0.083 0.003 1 NA NA NA NA NA NA 8.851
24 30 Fritzsche 2014 Ejaculate Quality and Production Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 90 M NO Indirect -0.197 0.044 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Mating Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 256 M NO Indirect -0.041 0.016 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Mating Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 256 M NO Indirect -0.065 0.016 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Mating Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 256 M NO Indirect -0.078 0.016 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Mating Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 256 M NO Indirect -0.267 0.016 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Both Reproductive Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 184 B NO Direct 0.095 0.022 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Both Reproductive Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 184 B NO Direct 0.407 0.022 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Both Reproductive Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 392 B NO Direct 0.059 0.010 1 NA NA NA NA NA NA 5.051
24 30 Fritzsche 2014 Both Reproductive Success Not Stated 30 Fritzsche, K., N. Timmermeyer, M. Wolter and N. K. Michiels 2014 Caenorhabditis remanei Nematode 1.000 5.00 60.00 0 0 Not Blind 20 NO 392 B NO Direct 0.219 0.010 1 NA NA NA NA NA NA 5.051
26 10 Gay 2009 Body Size Unstressed 10 Gay, L., D. J. Hosken, R. Vasudev, T. Tregenza and P. E. Eady 2009 Callosobruchus maculatus Beetle 60.000 1.00 120.00 1 1 Not Blind 90 YES 80 M YES Ambiguous 1.971 0.073 1 1.8700000 0.0822192 40 2.0400000 0.0885438 40 3.816
26 10 Gay 2009 Ejaculate Quality and Production Unstressed 10 Gay, L., D. J. Hosken, R. Vasudev, T. Tregenza and P. E. Eady 2009 Callosobruchus maculatus Beetle 60.000 1.00 120.00 1 1 Not Blind 90 YES 80 M NO Indirect 1.385 0.061 1 0.4500000 0.1201666 40 0.6400000 0.1517893 40 3.816
26 10 Gay 2009 Ejaculate Quality and Production Unstressed 10 Gay, L., D. J. Hosken, R. Vasudev, T. Tregenza and P. E. Eady 2009 Callosobruchus maculatus Beetle 60.000 1.00 120.00 1 1 Not Blind 90 YES 80 M NO Indirect 0.661 0.052 1 0.1571000 0.0059000 40 0.1626000 0.0103000 40 3.816
27 2 Grazer 2014 Both Reproductive Success Stressed 2 Grazer, V. M., M. Demont, L. Michalczyk, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 39 YES 228 B NO Direct 0.211 0.018 1 149.9000000 174.9000000 114 181.6000000 119.5000000 114 3.368
27 2 Grazer 2014 Both Reproductive Success Unstressed 2 Grazer, V. M., M. Demont, L. Michalczyk, M. J. G. Gage and O. Y. Martin 2014 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 39 YES 240 B NO Direct 0.214 0.017 1 240.6000000 189.7000000 120 291.5000000 275.6000000 120 3.368
28 2 Hangartner 2015 Immunity Unstressed 2 Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 49 YES 66 M NO Ambiguous -0.141 0.059 1 6.9700000 1.7400000 33 6.7000000 2.0300000 33 2.591
28 2 Hangartner 2015 Immunity Unstressed 2 Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 49 YES 66 F NO Ambiguous 0.848 0.065 1 6.3300000 1.3400000 33 7.7900000 2.0000000 33 2.591
28 2 Hangartner 2015 Immunity Stressed 2 Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 49 YES 288 M NO Ambiguous 0.175 0.014 1 80.8600000 41.5400000 144 87.9200000 39.1000000 144 2.591
28 2 Hangartner 2015 Immunity Stressed 2 Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 49 YES 288 F NO Ambiguous 0.089 0.014 1 85.0000000 41.5400000 144 88.9400000 46.4300000 144 2.591
28 2 Hangartner 2015 Immunity Unstressed 2 Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 49 YES 288 M NO Ambiguous -0.097 0.014 1 92.8100000 35.8400000 144 89.2100000 38.2800000 144 2.591
28 2 Hangartner 2015 Immunity Unstressed 2 Hangartner, S., L. Michalczyk, M. J. G. Gage and O. Y. Martin 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 49 YES 288 F NO Ambiguous 0.070 0.014 1 87.9900000 35.8400000 144 90.2900000 29.3200000 144 2.591
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 72 M NO Ambiguous -0.107 0.054 1 6.0300000 2.5400000 36 5.7500000 2.6200000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 72 F NO Ambiguous 0.121 0.054 1 6.8100000 2.6200000 36 7.1300000 2.6200000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 72 B NO Ambiguous -0.281 0.055 1 6.8400000 3.6700000 36 5.8200000 3.5000000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 72 M NO Ambiguous -0.150 0.055 1 6.1400000 2.5400000 36 5.7500000 2.6200000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 72 F NO Ambiguous -0.081 0.054 1 7.3400000 2.5400000 36 7.1300000 2.6200000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 72 B NO Ambiguous -0.361 0.394 1 7.1100000 3.5000000 36 5.8200000 3.5000000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 72 M NO Ambiguous -0.043 0.054 1 6.1400000 2.5400000 36 6.0300000 2.5400000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 72 F NO Ambiguous -0.203 0.055 1 7.3400000 2.5400000 36 6.8100000 2.6200000 36 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 72 B NO Ambiguous -0.074 0.054 1 7.1100000 3.5000000 36 6.8400000 3.6700000 36 3.264
29 2 Hangartner 2013 Immunity Stressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 M NO Ambiguous -0.073 0.014 1 1.7100000 3.0500000 144 1.5000000 2.6800000 144 3.264
29 2 Hangartner 2013 Immunity Stressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 F NO Ambiguous 0.035 0.014 1 1.3600000 2.7800000 144 1.4600000 2.9600000 144 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 M NO Ambiguous -0.164 0.014 1 2.1100000 3.3300000 144 1.6200000 2.5900000 144 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 F NO Ambiguous 0.022 0.014 1 2.6900000 4.3500000 144 2.7900000 4.8100000 144 3.264
29 2 Hangartner 2013 Immunity Stressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 288 M NO Ambiguous 0.013 0.014 1 1.6700000 2.9600000 144 1.7100000 3.0500000 144 3.264
29 2 Hangartner 2013 Immunity Stressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 288 F NO Ambiguous -0.025 0.014 1 1.4300000 2.7800000 144 1.3600000 2.7800000 144 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 288 M NO Ambiguous -0.190 0.014 1 2.2100000 3.5200000 144 1.6200000 2.5900000 144 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.000 1.00 100.00 1 1 Not Blind 56 NO 288 F NO Ambiguous 0.087 0.014 1 2.4100000 3.8900000 144 2.7900000 4.8100000 144 3.264
29 2 Hangartner 2013 Immunity Stressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 M NO Ambiguous -0.060 0.014 1 1.6700000 2.9600000 144 1.5000000 2.6800000 144 3.264
29 2 Hangartner 2013 Immunity Stressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 F NO Ambiguous 0.010 0.014 1 1.4300000 2.7800000 144 1.4600000 2.9600000 144 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 288 M NO Ambiguous -0.029 0.014 1 2.2100000 3.5200000 144 2.1100000 3.3300000 144 3.264
29 2 Hangartner 2013 Immunity Unstressed 2 Hangartner, S., S. H. Sbilordo, _. Michalczyk, M. J. G. Gage and O. Y. Martin 2013 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 56 NO 144 F NO Ambiguous 0.068 0.014 1 2.4100000 3.8900000 144 2.6900000 4.3500000 144 3.264
30 17 Holland 2002 Female Reproductive Success Stressed 17 Holland, B. 2002 Drosophila melanogaster Fly 2.500 4.00 5.00 1 1 Not Blind 38 YES 89 F NO Direct -0.116 0.015 1 11.5900000 10.1800000 133 10.6600000 4.9500000 133 3.516
30 17 Holland 2002 Female Reproductive Success Stressed 17 Holland, B. 2002 Drosophila melanogaster Fly 2.500 4.00 5.00 1 1 Not Blind 51 YES 89 F NO Direct 0.070 0.015 1 14.4300000 3.2800000 133 14.8100000 6.9300000 133 3.516
31 18 Holland 1999 Female Reproductive Success Stressed 18 Holland, B. and W. R. Rice 1999 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Not Blind 47 YES 76 F NO Direct -0.305 0.018 1 11.2400000 10.6600000 114 8.9300000 3.6000000 114 10.260
32 19 Hollis 2009 Mutant Frequency Stressed 19 Hollis, B., J. L. Fierst and D. Houle 2009 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 8 YES 27 M NO Indirect 0.807 0.053 -1 NA NA NA NA NA NA 5.429
32 19 Hollis 2009 Mutant Frequency Unstressed 19 Hollis, B., J. L. Fierst and D. Houle 2009 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 8 YES 27 M NO Indirect 0.237 0.049 -1 0.9410000 1.7760000 40 0.3990000 2.6590000 40 5.429
33 19 Hollis 2011 Both Reproductive Success Stressed 19 Hollis, B. and D. Houle 2011 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 60 YES 120 B NO Direct -0.304 0.011 1 126.5900000 28.9794410 180 117.6000000 29.1136051 180 3.276
33 19 Hollis 2011 Female Reproductive Success Stressed 19 Hollis, B. and D. Houle 2011 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 60 YES 164 F NO Direct 0.031 0.008 1 NA NA NA NA NA NA 3.276
33 19 Hollis 2011 Offspring Viability Stressed 19 Hollis, B. and D. Houle 2011 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 60 YES 164 F NO Direct -0.064 0.008 1 NA NA NA NA NA NA 3.276
34 19 Hollis 2014 Mating Latency Stressed 19 Hollis, B. and T. J. Kawecki 2014 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 100 YES 38 M YES Indirect 0.038 0.062 1 NA NA NA NA NA NA 5.051
34 19 Hollis 2014 Mating Latency Stressed 19 Hollis, B. and T. J. Kawecki 2014 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 100 YES 90 M YES Indirect 0.194 0.043 1 NA NA NA NA NA NA 5.051
34 19 Hollis 2014 Male Reproductive Success Stressed 19 Hollis, B. and T. J. Kawecki 2014 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 100 YES 17 M YES Ambiguous 1.216 0.091 1 0.6010000 0.2950000 23 0.8760000 0.1380000 28 5.051
34 19 Hollis 2014 Male Reproductive Success Stressed 19 Hollis, B. and T. J. Kawecki 2014 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 100 YES 21 M YES Ambiguous 0.659 0.066 1 0.5530000 0.3660000 30 0.7710000 0.2860000 33 5.051
34 19 Hollis 2014 Male Reproductive Success Stressed 19 Hollis, B. and T. J. Kawecki 2014 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 100 YES 15 M YES Ambiguous 0.830 0.090 1 0.6100000 0.3400000 22 0.8530000 0.2300000 23 5.051
35 19 Hollis 2017 Development Rate Stressed 19 Hollis, B., L. Keller and T. J. Kawecki 2017 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 139 YES 48 M NO Ambiguous -0.482 0.028 1 NA NA NA NA NA NA 4.201
35 19 Hollis 2017 Development Rate Stressed 19 Hollis, B., L. Keller and T. J. Kawecki 2017 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 139 YES 48 F NO Ambiguous 0.414 0.028 1 NA NA NA NA NA NA 4.201
35 19 Hollis 2017 Body Size Stressed 19 Hollis, B., L. Keller and T. J. Kawecki 2017 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 162 YES 60 M YES Ambiguous 0.000 0.022 1 NA NA NA NA NA NA 4.201
35 19 Hollis 2017 Body Size Stressed 19 Hollis, B., L. Keller and T. J. Kawecki 2017 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 162 YES 60 F YES Ambiguous -0.238 0.022 1 NA NA NA NA NA NA 4.201
35 19 Hollis 2017 Fitness Senescence Stressed 19 Hollis, B., L. Keller and T. J. Kawecki 2017 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 117 YES 44 M YES Indirect 0.500 0.031 -1 NA NA NA NA NA NA 4.201
35 19 Hollis 2017 Fitness Senescence Stressed 19 Hollis, B., L. Keller and T. J. Kawecki 2017 Drosophila melanogaster Fly 5.000 1.00 10.00 1 1 Not Blind 117 YES 45 F YES Indirect 0.017 0.030 -1 NA NA NA NA NA NA 4.201
36 29 Immonen 2014 Female Reproductive Success Unstressed 29 Immonen, E., R. R. Snook and M. G. Ritchie 2014 Drosophila pseudoobscura Fly 3.500 6.00 7.00 1 1 Not Blind 100 YES 30 F NO Direct 0.636 0.046 1 NA NA NA NA NA NA 2.320
37 20 Innocenti 2014 Body Size Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 30 NO 110 M YES Ambiguous -0.306 0.120 1 780.1295325 24.5249313 169 773.1405125 20.8806168 160 3.368
37 20 Innocenti 2014 Body Size Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 30 NO 107 F YES Ambiguous -0.290 0.013 1 879.0553188 25.2349182 160 870.6142500 32.5085570 160 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 30 NO 27 F NO Direct 0.745 0.053 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 31 NO 27 F NO Direct 0.490 0.051 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 50 NO 27 F NO Direct 0.545 0.051 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 58 NO 27 F NO Direct 0.379 0.050 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 30 NO 27 F NO Direct -0.228 0.049 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 31 NO 27 F NO Direct 0.300 0.050 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 50 NO 27 F NO Direct -0.108 0.049 1 NA NA NA NA NA NA 3.368
37 20 Innocenti 2014 Female Reproductive Success Unstressed 20 Innocenti, P., I. Flis and E. H. Morrow 2014 Drosophila melanogaster Fly 1.000 1.00 96.00 0 1 Not Blind 58 NO 27 F NO Direct 0.080 0.049 1 NA NA NA NA NA NA 3.368
38 3 Jacomb 2016 Pesticide Resistance Stressed 3 Jacomb, F., J. Marsh and L. Holman 2016 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Blind 5 YES 320 B NO Ambiguous 1.246 0.005 1 0.8560000 0.0210000 480 0.8920000 0.0350000 480 4.201
38 3 Jacomb 2016 Pesticide Resistance Unstressed 3 Jacomb, F., J. Marsh and L. Holman 2016 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Blind 5 YES 176 B NO Ambiguous 1.001 0.005 -1 0.0880000 0.0850000 480 0.0270000 0.0140000 48 4.201
39 32 Jarzebowska 2010 Female Reproductive Success Stressed 32 Jarzebowska, M. and J. Radwan 2010 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 8 YES 72 F NO Direct 0.390 0.019 1 37.9100000 27.9900000 96 51.3200000 38.5200000 120 5.659
39 32 Jarzebowska 2010 Female Reproductive Success Unstressed 32 Jarzebowska, M. and J. Radwan 2010 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 8 YES 72 F NO Direct -0.190 0.020 1 70.4400000 32.3000000 96 61.8700000 54.1700000 120 5.659
39 32 Jarzebowska 2010 Extinction Rate Stressed 32 Jarzebowska, M. and J. Radwan 2010 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 8 YES 11 B NO Direct 0.752 0.133 1 NA NA NA NA NA NA 5.659
39 32 Jarzebowska 2010 Offspring Viability Stressed 32 Jarzebowska, M. and J. Radwan 2010 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 8 YES 72 B NO Direct 0.150 0.019 1 0.7390000 0.5240000 96 0.8080000 0.4010000 120 5.659
39 32 Jarzebowska 2010 Offspring Viability Unstressed 32 Jarzebowska, M. and J. Radwan 2010 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 8 YES 72 B NO Direct -0.088 0.019 1 0.8350000 0.4730000 96 0.7880000 0.5730000 120 5.659
40 6 Klemme 2013 Male Reproductive Success Stressed 6 Klemme, I. and R. C. Firman 2013 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 18 YES 12 M YES Ambiguous 0.769 0.114 1 0.2800000 0.4200000 18 0.7200000 0.6700000 18 3.068
40 6 Klemme 2013 Male Reproductive Success Unstressed 6 Klemme, I. and R. C. Firman 2013 Mus domesticus Mouse 2.000 3.00 4.00 0 1 Not Blind 18 YES 12 M YES Ambiguous 0.946 0.119 1 0.3400000 0.3900000 18 0.7900000 0.5300000 18 3.068
41 4 Lumley 2015 Both Reproductive Success Stressed 4 Lumley, A. J., L. Michalczyk, J. J. N. Kitson, L. G. Spurgin, C. A. Morrison, J. L. Godwin, M. E. Dickinson, O. Y. Martin, B. C. Emerson, T. Chapman and M. J. G. Gage 2015 Tribolium castaneum Beetle 1.000 9.00 100.00 1 1 Not Blind 20 NO 56 B NO Direct 0.576 0.025 -1 NA NA NA NA NA NA 38.138
41 4 Lumley 2015 Both Reproductive Success Stressed 4 Lumley, A. J., L. Michalczyk, J. J. N. Kitson, L. G. Spurgin, C. A. Morrison, J. L. Godwin, M. E. Dickinson, O. Y. Martin, B. C. Emerson, T. Chapman and M. J. G. Gage 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 20 YES 16 B NO Direct 0.559 0.084 -1 NA NA NA NA NA NA 38.138
41 4 Lumley 2015 Extinction Rate Stressed 4 Lumley, A. J., L. Michalczyk, J. J. N. Kitson, L. G. Spurgin, C. A. Morrison, J. L. Godwin, M. E. Dickinson, O. Y. Martin, B. C. Emerson, T. Chapman and M. J. G. Gage 2015 Tribolium castaneum Beetle 1.000 9.00 100.00 1 1 Not Blind 20 NO 56 B NO Direct 0.522 0.024 1 NA NA NA NA NA NA 38.138
41 4 Lumley 2015 Extinction Rate Stressed 4 Lumley, A. J., L. Michalczyk, J. J. N. Kitson, L. G. Spurgin, C. A. Morrison, J. L. Godwin, M. E. Dickinson, O. Y. Martin, B. C. Emerson, T. Chapman and M. J. G. Gage 2015 Tribolium castaneum Beetle 3.000 5.00 6.00 1 1 Not Blind 20 YES 16 B NO Direct 0.798 0.087 1 NA NA NA NA NA NA 38.138
42 11 Maklakov 2009 Female Reproductive Success Not Stated 11 Maklakov, A. A., R. Bonduriansky and R. C. Brooks 2009 Callosobruchus maculatus Beetle 50.000 1.00 100.00 1 1 Not Blind 11 YES 11 F NO Direct -0.958 0.133 1 155.1200000 37.7600000 16 118.0000000 37.7600000 16 5.429
43 5 Martin 2003 Lifespan Unstressed 5 Martin, O. Y. and D. J. Hosken 2003 Sepsis cynipsea Fly 25.000 1.00 50.00 1 1 Not Blind 29 YES 10 F YES Indirect 0.841 0.138 1 NA NA NA NA NA NA 3.833
43 5 Martin 2003 Mating Success Unstressed 5 Martin, O. Y. and D. J. Hosken 2003 Sepsis cynipsea Fly 25.000 1.00 50.00 1 1 Not Blind 29 YES 10 M NO Indirect 0.920 0.140 1 NA NA NA NA NA NA 3.833
43 5 Martin 2003 Female Reproductive Success Unstressed 5 Martin, O. Y. and D. J. Hosken 2003 Sepsis cynipsea Fly 25.000 1.00 50.00 1 1 Not Blind 29 YES 10 F NO Direct 1.038 0.144 1 28.2000000 15.4532035 15 49.2000000 23.1604404 15 3.833
43 5 Martin 2003 Lifespan Stressed 5 Martin, O. Y. and D. J. Hosken 2003 Sepsis cynipsea Fly 25.000 1.00 50.00 1 1 Not Blind 29 YES 10 F NO Indirect -1.314 0.155 1 2.2130508 0.0600641 15 2.1161864 0.0817265 15 3.833
44 5 Martin 2003 Female Reproductive Success Unstressed 5 Martin, O. Y. and D. J. Hosken 2004 Sepsis cynipsea Fly 25.000 1.00 50.00 1 1 Not Blind 42 YES 12 F NO Direct 0.421 0.159 1 34.9043478 21.5075526 12 42.9391304 14.7600851 12 3.833
44 5 Martin 2003 Female Reproductive Success Unstressed 5 Martin, O. Y. and D. J. Hosken 2004 Sepsis cynipsea Fly 250.000 1.00 500.00 1 1 Not Blind 42 YES 12 F NO Direct -0.075 0.155 1 34.9043478 21.5075526 12 33.4434783 15.6035186 12 3.833
44 5 Martin 2003 Female Reproductive Success Unstressed 5 Martin, O. Y. and D. J. Hosken 2004 Sepsis cynipsea Fly 10.000 1.00 500.00 1 1 Not Blind 42 NO 12 F NO Direct -0.603 0.163 1 42.9391304 14.7600851 12 33.4434783 15.6035186 12 3.833
44 5 Martin 2003 Lifespan Unstressed 5 Martin, O. Y. and D. J. Hosken 2004 Sepsis cynipsea Fly 25.000 1.00 50.00 1 1 Not Blind 42 YES 24 F NO Indirect -0.405 0.082 1 17.3460898 2.4943223 24 16.3327787 2.4698682 24 3.833
44 5 Martin 2003 Lifespan Unstressed 5 Martin, O. Y. and D. J. Hosken 2004 Sepsis cynipsea Fly 250.000 1.00 500.00 1 1 Not Blind 42 YES 24 F NO Indirect -0.638 0.085 1 17.3460898 2.4943223 24 15.8086522 2.2497809 24 3.833
44 5 Martin 2003 Lifespan Unstressed 5 Martin, O. Y. and D. J. Hosken 2004 Sepsis cynipsea Fly 10.000 1.00 500.00 1 1 Not Blind 42 NO 24 F NO Indirect -0.216 0.081 1 16.3327787 2.4698682 24 15.8086522 2.2497809 24 3.833
45 33 McGuigan 2011 Mating Success Stressed 33 McGuigan, K., D. Petfield and M. W. Blows 2011 Drosophila serrata Fly 2.405 3.81 4.81 1 0 Not Blind 23 YES 292 M NO Indirect 0.034 0.014 1 0.4997000 0.3400000 146 0.5097000 0.2460000 146 5.146
45 33 McGuigan 2011 Female Reproductive Success Stressed 33 McGuigan, K., D. Petfield and M. W. Blows 2011 Drosophila serrata Fly 2.405 3.81 4.81 1 0 Not Blind 26 YES 208 F NO Direct 0.114 0.019 1 49.9300000 22.7000000 104 52.1740000 16.1000000 104 5.146
46 21 McKean 2008 Body Size Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 40 B YES Ambiguous 1.528 0.242 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Development Rate Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 40 B NO Ambiguous 0.853 0.105 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Development Rate Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 40 B NO Ambiguous 3.124 0.218 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Development Rate Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 40 B NO Ambiguous 2.655 0.184 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Mating Success Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 52 M NO Indirect 0.839 0.081 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Mating Success Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 52 M NO Indirect 1.598 0.099 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Mating Success Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 52 M NO Indirect 1.907 0.110 1 NA NA NA NA NA NA 4.737
46 21 McKean 2008 Immunity Unstressed 21 McKean, K. A. and L. Nunney 2008 Drosophila melanogaster Fly 1.700 2.40 170.00 1 1 Not Blind 58 NO 80 B NO Ambiguous -0.911 0.054 -1 NA NA NA NA NA NA 4.737
47 28 McNamara 2016 Ejaculate Quality and Production Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 153 M YES Indirect -0.106 0.027 1 2.7000000 0.8442748 88 2.6000000 1.0480935 65 4.259
47 28 McNamara 2016 Ejaculate Quality and Production Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 145 M YES Indirect -0.157 0.028 1 0.1600000 0.0728835 83 0.1500000 0.0472440 62 4.259
47 28 McNamara 2016 Ejaculate Quality and Production Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 202 M NO Indirect 0.100 0.020 1 0.5700000 0.1014889 103 0.5800000 0.0994987 99 4.259
47 28 McNamara 2016 Ejaculate Quality and Production Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 101 M YES Indirect -0.280 0.039 1 0.8600000 0.1428286 51 0.8200000 0.1414214 50 4.259
47 28 McNamara 2016 Mating Duration Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 127 M YES Ambiguous -0.371 0.032 1 534.6200000 204.1600000 64 466.0200000 160.0944118 63 4.259
47 28 McNamara 2016 Female Reproductive Success Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 127 F NO Direct 0.156 0.031 1 34.2600000 18.7200000 64 37.1700000 18.2556840 63 4.259
47 28 McNamara 2016 Male Reproductive Success Unstressed 28 McNamara, K. B., S. P. Robinson, M. E. Rosa, N. S. Sloan, E. van Lieshout and L. W. Simmons 2016 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 32 NO 125 M YES Ambiguous 0.315 0.032 1 0.6700000 0.3149603 62 0.7700000 0.3174902 63 4.259
48 12 McNamara 2014 Ejaculate Quality and Production Unstressed 12 McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 Teleogryllus oceanicus Cricket 2.000 3.00 4.00 0 1 Blind 1 YES 351 M NO Indirect 0.568 0.012 1 0.9400000 0.3200000 179 1.0800000 0.1300000 172 3.177
48 12 McNamara 2014 Immunity Unstressed 12 McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 Teleogryllus oceanicus Cricket 2.000 3.00 4.00 0 1 Blind 1 YES 336 M NO Ambiguous 0.000 0.012 1 1.6500000 3.4000000 175 1.6500000 3.2000000 161 3.177
48 12 McNamara 2014 Immunity Unstressed 12 McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 Teleogryllus oceanicus Cricket 2.000 3.00 4.00 0 1 Blind 1 YES 413 F NO Ambiguous -0.050 0.010 1 80.2000000 21.8000000 203 79.0500000 20.3000000 210 3.177
48 12 McNamara 2014 Immunity Unstressed 12 McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 Teleogryllus oceanicus Cricket 2.000 3.00 4.00 0 1 Blind 1 YES 788 B NO Ambiguous -0.106 0.005 -1 NA NA NA NA NA 401 3.177
48 12 McNamara 2014 Immunity Unstressed 12 McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 Teleogryllus oceanicus Cricket 2.000 3.00 4.00 0 1 Blind 1 YES 335 M NO Ambiguous -0.108 0.012 1 0.5300000 0.1650000 173 0.5100000 0.2050000 162 3.177
48 12 McNamara 2014 Immunity Unstressed 12 McNamara, K. B., E. van Lieshout and L. W. Simmons 2014 Teleogryllus oceanicus Cricket 2.000 3.00 4.00 0 1 Blind 1 YES 406 F NO Ambiguous -0.098 0.010 1 0.5500000 0.2040000 202 0.5300000 0.2050000 204 3.177
49 4 Michalczyk 2011 Mating Latency Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 47 M YES Indirect 0.556 0.086 -1 358.9000000 494.4000000 24 143.4000000 203.6000000 23 5.146
49 4 Michalczyk 2011 Mating Latency Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 57 M YES Indirect 0.470 0.070 -1 294.7000000 313.6000000 28 158.0000000 259.1000000 29 5.146
49 4 Michalczyk 2011 Mating Duration Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 53 M YES Ambiguous 1.987 0.112 1 73.5000000 67.7000000 30 483.4000000 299.5000000 23 5.146
49 4 Michalczyk 2011 Mating Duration Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 58 M YES Ambiguous 0.551 0.070 1 181.8000000 198.5000000 29 323.3000000 298.6000000 29 5.146
49 4 Michalczyk 2011 Mating Frequency Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 53 M YES Indirect 1.982 0.112 1 2.1000000 2.2000000 30 22.2000000 15.0000000 23 5.146
49 4 Michalczyk 2011 Mating Frequency Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 58 M YES Indirect 0.929 0.075 1 4.2000000 4.1000000 29 15.0000000 15.7000000 29 5.146
49 4 Michalczyk 2011 Female Reproductive Success Stressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 30 F NO Direct 1.852 0.183 1 183.8000000 80.6000000 15 409.5000000 147.0000000 15 5.146
49 4 Michalczyk 2011 Female Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 30 F NO Direct 0.061 0.126 1 346.1000000 255.8000000 15 366.3000000 378.7000000 15 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 20 M YES Ambiguous 0.614 0.193 1 0.4570000 0.3580000 10 0.6320000 0.1450000 10 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 20 M YES Ambiguous 0.931 0.205 1 0.5290000 0.2500000 10 0.7200000 0.1210000 10 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 20 M YES Ambiguous 0.319 0.186 1 0.5700000 0.0640000 10 0.6210000 0.2070000 10 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 24 M YES Ambiguous -0.219 0.156 1 0.4530000 0.3920000 12 0.3610000 0.4180000 12 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 24 M YES Ambiguous 0.178 0.156 1 0.4450000 0.4240000 12 0.5140000 0.3180000 12 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 24 M YES Ambiguous 0.025 0.155 1 0.4210000 0.3560000 12 0.4300000 0.3340000 12 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 24 M YES Ambiguous 0.110 0.156 1 0.7970000 0.3520000 12 0.8330000 0.2730000 12 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 24 M YES Ambiguous 0.724 0.166 1 0.6940000 0.3350000 12 0.9010000 0.2000000 12 5.146
49 4 Michalczyk 2011 Male Reproductive Success Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 24 M YES Ambiguous -0.389 0.159 1 0.8390000 0.2080000 12 0.7280000 0.3300000 12 5.146
49 4 Michalczyk 2011 Lifespan Stressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 30 F NO Indirect 0.211 0.127 1 8.3000000 2.5500000 15 8.9000000 2.9700000 15 5.146
49 4 Michalczyk 2011 Lifespan Unstressed 4 Michalczyk, L., A. L. Millard, O. Y. Martin, A. J. Lumley, B. C. Emerson and M. J. G. Gage 2011 Tribolium castaneum Beetle 1.050 6.00 105.00 1 1 Not Blind 20 NO 29 F NO Indirect 0.677 0.138 1 8.8000000 2.7200000 14 10.3000000 1.4400000 15 5.146
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 27 M NO Indirect 0.471 0.074 1 0.2000000 0.1120000 27 0.2540000 0.1140000 27 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 29 M NO Indirect 0.041 0.069 1 0.8890000 0.0740000 28 0.8920000 0.0700000 30 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 31 M NO Indirect 0.211 0.063 1 0.8760000 0.1030000 31 0.9010000 0.1290000 31 4.659
50 22 Nandy 2013 Mating Latency Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 145 M YES Indirect -0.062 0.014 -1 2.9400000 1.8800000 149 3.1200000 3.6900000 143 4.659
50 22 Nandy 2013 Mating Duration Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 145 M YES Ambiguous 0.918 0.015 1 11.7400000 2.3700000 149 14.0500000 2.6500000 143 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 122 M NO Indirect 0.153 0.016 1 0.0771000 0.1630000 122 0.1023000 0.1650000 121 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 27 M NO Indirect 0.314 0.073 1 0.1700000 0.0720000 27 0.2000000 0.1120000 27 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 29 M NO Indirect 0.613 0.073 1 0.8350000 0.0980000 28 0.8890000 0.0740000 28 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 31 M NO Indirect -0.178 0.064 1 0.8970000 0.1290000 30 0.8760000 0.1030000 31 4.659
50 22 Nandy 2013 Mating Latency Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 145 M YES Indirect 0.159 0.014 -1 3.5600000 5.2200000 142 2.9400000 1.8800000 149 4.659
50 22 Nandy 2013 Mating Duration Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 145 M YES Ambiguous -0.471 0.014 1 12.8800000 2.4600000 142 11.7400000 2.3700000 149 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 122 M NO Indirect 0.170 0.016 1 0.0543000 0.0961000 122 0.0771000 0.1630000 122 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 27 M NO Indirect 0.868 0.079 1 0.1700000 0.0720000 27 0.2540000 0.1140000 27 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 29 M NO Indirect 0.660 0.073 1 0.8350000 0.0980000 28 0.8920000 0.0700000 30 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 31 M NO Indirect 0.031 0.064 1 0.8970000 0.1290000 30 0.9010000 0.1290000 31 4.659
50 22 Nandy 2013 Mating Latency Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 145 M YES Indirect 0.097 0.014 -1 3.5600000 5.2200000 142 3.1200000 3.6900000 143 4.659
50 22 Nandy 2013 Mating Duration Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 145 M YES Ambiguous 0.456 0.014 1 12.8800000 2.4600000 142 14.0500000 2.6500000 143 4.659
50 22 Nandy 2013 Mating Success Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 122 M NO Indirect 0.355 0.017 1 0.0543000 0.0961000 122 0.1023000 0.1650000 121 4.659
50 22 Nandy 2013 Offspring Viability Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 1440 B NO Direct 0.088 0.001 1 0.8700000 0.3415260 1440 0.9000000 0.3415260 1440 4.659
50 22 Nandy 2013 Offspring Viability Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Not Blind 50 NO 1440 B NO Direct -0.088 0.001 1 0.9000000 0.3415260 1440 0.8700000 0.3415260 1440 4.659
50 22 Nandy 2013 Offspring Viability Unstressed 22 Nandy, B., P. Chakraborty, V. Gupta, S. Z. Ali and N. G. Prasad 2013 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Not Blind 50 NO 1440 B NO Direct 0.000 0.001 1 0.9000000 0.3415260 1440 0.9000000 0.3415260 1440 4.659
51 22 Nandy 2014 Body Size Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 27 F YES Ambiguous -0.089 0.072 1 0.2830000 0.0124900 27 0.2820000 0.0101274 27 4.612
51 22 Nandy 2014 Body Size Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Blind 45 NO 27 F YES Ambiguous -0.981 0.081 1 0.2943519 0.0103532 27 0.2826667 0.0124900 27 4.612
51 22 Nandy 2014 Body Size Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 27 F YES Ambiguous -1.183 0.085 1 0.2943519 0.0103532 27 0.2822222 0.0101274 27 4.612
51 22 Nandy 2014 Mating Frequency Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 30 F YES Indirect 0.090 0.065 1 6.7439524 3.1492291 30 7.0200794 2.9816484 30 4.612
51 22 Nandy 2014 Mating Frequency Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Blind 45 NO 30 F YES Indirect -0.284 0.066 1 7.6940238 3.4353720 30 6.7439524 3.1492291 30 4.612
51 22 Nandy 2014 Mating Frequency Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 30 F YES Indirect -0.205 0.065 1 7.6940238 3.4353720 30 7.0200794 2.9816484 30 4.612
51 22 Nandy 2014 Female Reproductive Success Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 29 F NO Direct 0.185 0.067 1 50.3663793 7.6774347 29 51.5985906 5.1763110 29 4.612
51 22 Nandy 2014 Female Reproductive Success Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Blind 45 NO 29 F NO Direct -0.890 0.075 1 56.1414116 4.7002918 28 50.3663793 7.6774347 29 4.612
51 22 Nandy 2014 Female Reproductive Success Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 29 F NO Direct -0.905 0.075 1 56.1414116 4.7002918 28 51.5985906 5.1763110 29 4.612
51 22 Nandy 2014 Female Reproductive Success Stressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 28 F NO Direct 0.771 0.076 1 47.9508929 7.0792749 28 52.6177249 4.5419731 27 4.612
51 22 Nandy 2014 Female Reproductive Success Stressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Blind 45 NO 28 F NO Direct 0.675 0.071 1 42.6208333 8.3991535 30 47.9508929 7.0792749 28 4.612
51 22 Nandy 2014 Female Reproductive Success Stressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 28 F NO Direct 1.439 0.087 1 42.6208333 8.3991535 30 52.6177249 4.5419731 27 4.612
51 22 Nandy 2014 Lifespan Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 29 F NO Indirect 1.315 0.081 1 33.4558333 4.1586802 30 38.8756979 3.9717452 29 4.612
51 22 Nandy 2014 Lifespan Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 27 F NO Indirect 0.041 0.067 1 33.2781463 4.5549330 28 33.4558333 4.1586802 30 4.612
51 22 Nandy 2014 Lifespan Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Blind 45 NO 29 F NO Indirect 1.295 0.083 1 33.2781463 4.5549330 28 38.8756979 3.9717452 29 4.612
51 22 Nandy 2014 Lifespan Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 1.00 32.00 1 1 Blind 45 NO 27 F NO Indirect 0.189 0.074 1 56.2509143 5.8375189 25 57.2156463 4.2069037 28 4.612
51 22 Nandy 2014 Lifespan Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 29 F NO Indirect -0.699 0.078 1 60.1348639 5.1204446 28 56.2509143 5.8375189 25 4.612
51 22 Nandy 2014 Lifespan Unstressed 22 Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen and N. G. Prasad 2014 Drosophila melanogaster Fly 1.000 3.00 32.00 1 1 Blind 45 NO 27 F NO Indirect -0.612 0.073 1 60.1348639 5.1204446 28 57.2156463 4.2069037 28 4.612
52 27 Nelson 2013 Body Size Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 3 YES 20 M YES Ambiguous -0.831 0.201 1 NA NA NA NA NA NA 3.407
52 27 Nelson 2013 Body Size Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 3 YES 20 F YES Ambiguous -0.831 0.201 1 NA NA NA NA NA NA 3.407
52 27 Nelson 2013 Male Attractiveness Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 3 YES 20 M YES Ambiguous 1.999 0.283 1 0.3850000 0.1090000 10 0.6210000 0.1170000 10 3.407
52 27 Nelson 2013 Male Reproductive Success Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 2 YES 100 M YES Ambiguous 0.415 0.040 1 NA NA NA NA NA NA 3.407
52 27 Nelson 2013 Female Reproductive Success Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 2 YES 200 F NO Direct -0.118 0.020 1 NA NA NA NA NA NA 3.407
52 27 Nelson 2013 Male Reproductive Success Stressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 2 YES 12 M YES Ambiguous 0.835 0.313 1 4.5300000 3.5000000 6 9.5400000 7.0100000 6 3.407
52 27 Nelson 2013 Male Reproductive Success Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 2 YES 12 M YES Ambiguous 0.849 0.314 1 13.5000000 11.5700000 6 23.1800000 9.3500000 6 3.407
52 27 Nelson 2013 Offspring Viability Unstressed 27 Nelson, A. C., K. E. Colson, S. Harmon and W. K. Potts 2013 Mus musculus Mouse 15.000 0.50 30.00 1 1 Blind 2 YES 100 M NO Direct -0.304 0.041 1 NA NA NA NA NA NA 3.407
53 23 Partridge 1980 Offspring Viability Unstressed 23 Partridge, L. 1980 Drosophila melanogaster Fly 100.000 1.00 200.00 1 1 Not Blind 1 YES 41 B NO Direct 0.773 0.103 1 48.9000000 2.9495762 18 51.1000000 2.6645825 23 NA
53 23 Partridge 1980 Offspring Viability Unstressed 23 Partridge, L. 1980 Drosophila melanogaster Fly 100.000 1.00 200.00 1 1 Not Blind 1 YES 35 B NO Direct 0.874 0.125 1 48.1000000 2.4083189 14 49.8000000 1.4832397 21 NA
53 23 Partridge 1980 Offspring Viability Unstressed 23 Partridge, L. 1980 Drosophila melanogaster Fly 100.000 1.00 200.00 1 1 Not Blind 1 YES 60 B NO Direct 0.707 0.069 1 49.4400000 1.4142136 32 50.4500000 1.4142136 28 NA
54 31 Pelabon 2014 Body Size Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 171 F YES Ambiguous 0.080 0.023 1 25.0000000 4.3826932 80 25.3600000 4.5789082 91 3.232
54 31 Pelabon 2014 Body Size Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 284 M YES Ambiguous 0.019 0.014 1 16.1800000 1.6099182 127 16.2100000 1.5982097 157 3.232
54 31 Pelabon 2014 Male Attractiveness Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 284 M YES Ambiguous 0.120 0.014 1 1.5900000 0.8624562 127 1.7000000 0.9589258 157 3.232
54 31 Pelabon 2014 Male Attractiveness Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 284 M YES Ambiguous 0.000 0.014 1 3.1300000 0.1437427 127 3.1300000 0.1278568 157 3.232
54 31 Pelabon 2014 Male Attractiveness Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 284 M YES Ambiguous 0.193 0.014 1 0.1600000 0.8624562 127 0.3300000 0.8949974 157 3.232
54 31 Pelabon 2014 Male Attractiveness Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 284 M YES Ambiguous 0.055 0.014 1 150.8900000 7.9058485 127 151.3400000 8.2900267 157 3.232
54 31 Pelabon 2014 Female Reproductive Success Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 174 F NO Direct -0.277 0.023 1 1.5900000 0.7244860 80 1.3820000 0.7659334 94 3.232
54 31 Pelabon 2014 Offspring Viability Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 173 F YES Direct 0.621 0.024 1 6.9400000 0.5992662 80 7.3200000 0.6171936 93 3.232
54 31 Pelabon 2014 Offspring Viability Unstressed 31 Pelabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming and G. Rosenqvist 2014 Poecilia reticulata Guppy 10.000 1.00 20.00 1 1 Not Blind 9 YES 145 F NO Direct 0.010 0.027 1 3.3200000 2.8195212 73 3.3500000 2.9698485 72 3.232
55 24 Pitnick 2001a Body Size Unstressed 24 Pitnick, S., W. D. Brown and G. T. Miller 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Not Blind 84 YES 228 F YES Ambiguous 0.973 0.020 1 0.8790000 0.0427083 114 0.9210000 0.0427083 114 NA
55 24 Pitnick 2001a Body Size Unstressed 24 Pitnick, S., W. D. Brown and G. T. Miller 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Not Blind 84 YES 234 F YES Ambiguous 0.763 0.018 1 0.8950000 0.0432666 117 0.9240000 0.0324500 117 NA
55 24 Pitnick 2001a Female Reproductive Success Unstressed 24 Pitnick, S., W. D. Brown and G. T. Miller 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Not Blind 84 YES 230 F NO Direct -0.363 0.018 1 129.1000000 80.4285397 115 99.0000000 84.7180618 115 NA
55 24 Pitnick 2001a Female Reproductive Success Unstressed 24 Pitnick, S., W. D. Brown and G. T. Miller 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Not Blind 84 YES 236 F NO Direct -0.246 0.017 1 122.0000000 86.9022439 118 101.2000000 81.4708537 118 NA
56 24 Pitnick 2001b Body Size Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 61 YES 100 M YES Ambiguous 2.115 0.062 1 233.1300000 16.9400000 50 270.8300000 18.4100000 50 NA
56 24 Pitnick 2001b Body Size Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 61 YES 100 M YES Ambiguous 1.346 0.048 1 211.6700000 19.8900000 50 237.1900000 17.6800000 50 NA
56 24 Pitnick 2001b Ejaculate Quality and Production Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 61 YES 100 M NO Indirect 2.886 0.081 1 8.7307692 1.5410000 50 13.7564103 1.9037490 50 NA
56 24 Pitnick 2001b Ejaculate Quality and Production Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 61 YES 100 M NO Indirect 0.596 0.041 1 7.7820513 2.2663679 50 9.0897436 2.0850585 50 NA
56 24 Pitnick 2001b Ejaculate Quality and Production Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 61 YES 30 M NO Indirect 1.069 0.145 1 25.5723951 4.4651987 15 30.4600812 4.4023085 15 NA
56 24 Pitnick 2001b Ejaculate Quality and Production Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 61 YES 30 M NO Indirect 1.484 0.163 1 27.4722598 3.3331765 15 32.9769959 3.8991876 15 NA
56 24 Pitnick 2001b Ejaculate Quality and Production Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 81 YES 30 M NO Indirect 0.175 0.127 1 177.4228571 4.2492160 15 178.1600000 3.9836400 15 NA
56 24 Pitnick 2001b Ejaculate Quality and Production Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 81 YES 30 M NO Indirect -1.448 0.161 1 179.7885714 3.1869120 15 174.8857143 3.3860940 15 NA
56 24 Pitnick 2001b Mating Success Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 81 YES 178 M NO Indirect 0.015 0.022 1 NA NA NA NA NA NA NA
56 24 Pitnick 2001b Mating Success Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 81 YES 180 M NO Indirect 0.148 0.022 1 NA NA NA NA NA NA NA
56 24 Pitnick 2001b Male Reproductive Success Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 66 YES 140 M YES Ambiguous -0.436 0.029 1 NA NA NA NA NA NA NA
56 24 Pitnick 2001b Male Reproductive Success Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 38 YES 315 M YES Ambiguous 0.022 0.014 1 0.5878581 0.3673826 112 0.5976808 0.4837226 203 NA
56 24 Pitnick 2001b Male Reproductive Success Unstressed 24 Pitnick, S., G. T. Miller, J. Reagan and B. Holland 2001 Drosophila melanogaster Fly 2.000 3.00 4.00 1 1 Blind 38 YES 344 M YES Ambiguous 0.327 0.012 1 0.4503411 0.4170165 162 0.5968622 0.4754863 182 NA
57 32 Plesnar-Bielak 2011 Offspring Viability Stressed 32 Plesnar, A., M. Konior and J. Radwan 2011 Rhizoglyphus robini Mite 1.000 1.00 10.00 1 1 Not Blind 2 NO 80 M NO Direct 0.060 0.049 1 0.7700000 0.1700000 40 0.7800000 0.1600000 40 1.029
57 32 Plesnar-Bielak 2011 Offspring Viability Unstressed 32 Plesnar, A., M. Konior and J. Radwan 2011 Rhizoglyphus robini Mite 1.000 1.00 10.00 1 1 Not Blind 2 NO 80 M NO Direct -0.094 0.049 1 0.9500000 0.1100000 40 0.9400000 0.1000000 40 1.029
58 32 Plesnar-Bielak 2012 Female Reproductive Success Stressed 32 Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop and J. Radwan 2012 Rhizoglyphus robini Mite 20.000 1.00 40.00 1 1 Not Blind 14 YES 60 F NO Direct 1.504 0.127 1 31.0909091 15.1950949 11 92.8571429 43.4161068 49 5.683
58 32 Plesnar-Bielak 2012 Female Reproductive Success Unstressed 32 Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop and J. Radwan 2012 Rhizoglyphus robini Mite 20.000 1.00 40.00 1 1 Not Blind 14 YES 95 F NO Direct 0.174 0.038 1 134.5000000 48.3000374 48 143.1428571 49.8409939 56 5.683
58 32 Plesnar-Bielak 2012 Female Reproductive Success Stressed 32 Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop and J. Radwan 2012 Rhizoglyphus robini Mite 20.000 1.00 40.00 1 1 Not Blind 14 YES 104 F NO Direct 1.171 0.071 1 NA NA NA NA NA NA 5.683
58 32 Plesnar-Bielak 2012 Female Reproductive Success Unstressed 32 Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop and J. Radwan 2012 Rhizoglyphus robini Mite 20.000 1.00 40.00 1 1 Not Blind 14 YES 117 F NO Direct 0.526 0.120 1 NA NA NA NA NA NA 5.683
58 32 Plesnar-Bielak 2012 Extinction Rate Stressed 32 Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop and J. Radwan 2012 Rhizoglyphus robini Mite 20.000 1.00 40.00 1 1 Not Blind 14 YES 11 B NO Direct 1.510 0.740 1 NA NA NA NA NA NA 5.683
59 13 Power 2014 Female Reproductive Success Stressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 32 F NO Direct 1.331 0.148 1 741.0000000 154.4321210 18 948.0000000 147.7954668 14 2.747
59 13 Power 2014 Female Reproductive Success Stressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 32 F NO Direct 1.339 0.149 1 37.0000000 7.6367532 18 47.4000000 7.4833148 14 2.747
59 13 Power 2014 Female Reproductive Success Unstressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 36 F NO Direct 1.242 0.128 1 602.0000000 143.8255193 18 752.0000000 84.8528137 18 2.747
59 13 Power 2014 Female Reproductive Success Unstressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 36 F NO Direct 1.240 0.128 1 30.1000000 7.2124892 18 37.6000000 4.2426407 18 2.747
59 13 Power 2014 Offspring Viability Stressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 32 F NO Direct 1.465 0.154 1 765.0000000 156.9777054 18 978.0000000 118.9847049 14 2.747
59 13 Power 2014 Offspring Viability Stressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 32 F NO Direct 1.428 0.153 1 38.3000000 8.0610173 18 48.9000000 5.9866518 14 2.747
59 13 Power 2014 Offspring Viability Stressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 32 B NO Direct 1.017 0.137 1 70.4000000 9.7580736 18 79.1000000 5.9866518 14 2.747
59 13 Power 2014 Offspring Viability Unstressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 36 F NO Direct 1.194 0.126 1 674.0000000 181.5850214 18 852.0000000 97.5807358 18 2.747
59 13 Power 2014 Offspring Viability Unstressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 36 F NO Direct 1.223 0.127 1 33.7000000 8.9095454 18 42.6000000 4.6669048 18 2.747
59 13 Power 2014 Offspring Viability Unstressed 13 Power, D. J. and L. Holman 2014 Callosobruchus maculatus Beetle 1.500 2.00 3.00 0 1 Not Blind 5 YES 36 B NO Direct 1.050 0.122 1 73.0000000 7.6367532 18 79.8000000 4.6669048 18 2.747
60 13 Power 2015 Female Reproductive Success Unstressed 13 Power, D. J. and L. Holman 2015 Callosobruchus maculatus Beetle 2.000 3.00 4.00 1 0 Blind 3 YES 39 F NO Direct 0.160 0.099 1 39.4500000 15.0559483 20 41.7368421 12.7446813 19 2.747
60 13 Power 2015 Offspring Viability Unstressed 13 Power, D. J. and L. Holman 2015 Callosobruchus maculatus Beetle 2.000 3.00 4.00 1 0 Blind 3 YES 39 F NO Direct -0.396 0.100 1 0.6091667 0.1700941 20 0.5425014 0.1557092 19 2.747
61 25 Promislow 1998 Body Size Unstressed 25 Promislow, D. E. L., E. A. Smith and L. Pearse 1998 Drosophila melanogaster Fly 3.000 5.00 6.00 1 1 Not Blind 13 YES 150 M YES Ambiguous 0.100 0.026 1 -0.0125000 0.2600000 75 0.0168000 0.3190000 75 9.821
61 25 Promislow 1998 Body Size Unstressed 25 Promislow, D. E. L., E. A. Smith and L. Pearse 1998 Drosophila melanogaster Fly 3.000 5.00 6.00 1 1 Not Blind 13 YES 150 F YES Ambiguous -0.449 0.027 1 0.0950000 0.1750000 75 -0.0870000 0.5430000 75 9.821
61 25 Promislow 1998 Offspring Viability Unstressed 25 Promislow, D. E. L., E. A. Smith and L. Pearse 1998 Drosophila melanogaster Fly 3.000 5.00 6.00 1 1 Not Blind 17 YES 10182 B NO Direct 0.006 0.001 1 NA NA NA NA NA NA 9.821
62 32 Radwan 2004a Offspring Viability Stressed 32 Radwan, J. 2004 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 2 YES 50 B NO Direct 0.739 0.118 1 42.1100000 32.8700000 39 65.3900000 22.6900000 11 3.914
63 32 Radwan 2004b Female Reproductive Success Unstressed 32 Radwan, J., J. Unrug, K. Sigorska and K. Gawronska 2004 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 11 YES 92 F NO Direct -0.142 0.043 1 112.7000000 25.1624442 46 108.7000000 30.3170150 46 2.893
63 32 Radwan 2004b Male Reproductive Success Unstressed 32 Radwan, J., J. Unrug, K. Sigorska and K. Gawronska 2004 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 11 YES 66 M YES Ambiguous -0.123 0.059 1 0.6170000 0.7180703 33 0.5430000 0.4423313 33 2.893
63 32 Radwan 2004b Offspring Viability Unstressed 32 Radwan, J., J. Unrug, K. Sigorska and K. Gawronska 2004 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 11 YES 106 B NO Direct 0.106 0.037 1 0.7030000 0.1965630 53 0.7610000 0.7425712 53 2.893
63 32 Radwan 2004b Lifespan Unstressed 32 Radwan, J., J. Unrug, K. Sigorska and K. Gawronska 2004 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 11 YES 90 F NO Indirect -0.085 0.044 1 25.3700000 21.1979244 45 23.7400000 16.4350996 45 2.893
64 34 Rundle 2006 Both Reproductive Success Stressed 34 Rundle, H. D., S. F. Chenoweth and M. W. Blows 2006 Drosophila serrata Fly 55.000 1.00 110.00 1 1 Not Blind 16 YES 552 B NO Direct -0.067 0.007 1 30.4100000 40.5200000 276 27.6800000 40.5200000 276 4.292
64 34 Rundle 2006 Both Reproductive Success Unstressed 34 Rundle, H. D., S. F. Chenoweth and M. W. Blows 2006 Drosophila serrata Fly 55.000 1.00 110.00 1 1 Not Blind 16 YES 552 B NO Direct -0.028 0.007 1 19.5700000 23.5600000 276 18.8300000 28.2700000 276 4.292
66 37 Simmons 2008 Ejaculate Quality and Production Unstressed 37 Simmons, L. W. and F. Garcia-Gonzalez 2008 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 20 YES 88 M NO Indirect 0.918 0.049 1 2.1300000 0.5969925 44 2.6000000 0.3979950 44 4.737
66 37 Simmons 2008 Body Condition Unstressed 37 Simmons, L. W. and F. Garcia-Gonzalez 2008 Onthophagus taurus Beetle 10.000 1.00 20.00 1 1 Not Blind 20 YES 88 M NO Indirect -0.727 0.048 1 NA NA NA NA NA NA 4.737
67 32 Tilszer 2006 Early Fecundity Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 120 F YES Ambiguous 0.205 0.033 1 86.7000000 40.2790268 60 95.5000000 44.9266068 60 4.292
67 32 Tilszer 2006 Early Fecundity Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 120 F YES Ambiguous 0.259 0.033 1 90.7000000 52.6725735 60 102.4000000 35.6314468 60 4.292
67 32 Tilszer 2006 Mating Success Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 120 M NO Indirect 1.768 0.046 1 0.4310000 0.1006976 60 0.6170000 0.1084435 60 4.292
67 32 Tilszer 2006 Mating Success Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 120 M NO Indirect 0.282 0.033 1 0.4760000 0.5654556 60 0.6340000 0.5499636 60 4.292
67 32 Tilszer 2006 Female Reproductive Success Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 120 F NO Direct 0.022 0.033 1 284.3000000 105.3451470 60 286.8000000 120.8370804 60 4.292
67 32 Tilszer 2006 Female Reproductive Success Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 120 F NO Direct 0.123 0.033 1 278.0000000 61.1931369 60 284.4000000 39.5044301 60 4.292
67 32 Tilszer 2006 Offspring Viability Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 42 F NO Direct -0.287 0.093 1 97.8000000 0.4582576 21 97.5000000 1.3747727 21 4.292
67 32 Tilszer 2006 Offspring Viability Unstressed 32 Tilszer, M., K. Antoszczyk, N. Salek, E. Zajac and J. Radwan 2006 Rhizoglyphus robini Mite 5.000 1.00 10.00 1 1 Not Blind 37 YES 42 F NO Direct -0.199 0.092 1 97.4000000 0.9165151 21 96.6000000 5.4990908 21 4.292
68 12 van Lieshout 2014 Behavioural Plasticity Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 99 F YES Ambiguous -0.018 0.040 1 285.4200000 196.1144075 50 282.2448980 155.8838417 49 4.612
68 12 van Lieshout 2014 Behavioural Plasticity Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 98 F YES Ambiguous -0.132 0.040 1 393.4166667 153.0849901 48 371.1800000 179.6165633 50 4.612
68 12 van Lieshout 2014 Body Size Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 99 M YES Ambiguous 0.155 0.040 1 3.4253300 0.5533225 50 3.5132898 0.4702925 49 4.612
68 12 van Lieshout 2014 Body Size Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 98 F YES Ambiguous 0.259 0.041 1 4.4623021 0.6760828 48 4.6295060 0.6208700 50 4.612
68 12 van Lieshout 2014 Ejaculate Quality and Production Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 99 M NO Indirect 0.116 0.040 1 0.2007420 0.0585906 50 0.2075663 0.0648678 49 4.612
68 12 van Lieshout 2014 Ejaculate Quality and Production Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 98 M NO Indirect -0.022 0.040 1 0.1668542 0.0523804 48 0.1663250 0.0433648 50 4.612
68 12 van Lieshout 2014 Mating Latency Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 99 M YES Indirect 0.084 0.040 -1 49.2000000 73.2039365 50 44.1836735 40.4874844 49 4.612
68 12 van Lieshout 2014 Mating Latency Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 98 F YES Indirect -0.105 0.040 1 69.6458333 86.1992964 48 61.4200000 68.2764758 50 4.612
68 12 van Lieshout 2014 Immunity Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 96 M NO Ambiguous -0.373 0.042 1 12.7920000 0.3350000 49 12.6780000 0.2580000 47 4.612
68 12 van Lieshout 2014 Immunity Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 94 F NO Ambiguous -0.564 0.044 1 12.9760000 0.2400000 47 12.8530000 0.1880000 47 4.612
68 12 van Lieshout 2014 Mating Duration Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 99 M YES Ambiguous 0.029 0.040 1 565.1000000 277.6167708 50 572.7551020 244.4586307 49 4.612
68 12 van Lieshout 2014 Mating Duration Unstressed 12 van Lieshout, E., K. B. McNamara and L. W. Simmons 2014 Callosobruchus maculatus Beetle 1.000 2.00 120.00 1 1 Not Blind 11 NO 98 F YES Ambiguous -0.354 0.041 1 616.3958333 261.4579206 48 530.8400000 217.4206268 50 4.612
69 26 Wigby 2004 Mating Frequency Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 31 NO 180 F YES Indirect 0.236 0.011 1 0.3000000 0.5366563 180 0.6700000 2.1466253 180 3.719
69 26 Wigby 2004 Mating Frequency Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 900 M YES Indirect 0.161 0.002 1 0.0390000 0.0900000 900 0.0650000 0.2100000 900 3.719
69 26 Wigby 2004 Mating Frequency Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 31 NO 180 F YES Indirect 0.178 0.011 1 0.2300000 0.1341641 180 0.3000000 0.5366563 180 3.719
69 26 Wigby 2004 Mating Frequency Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 33 NO 900 M YES Indirect 0.783 0.007 1 0.0530000 0.2400000 900 0.2300000 0.1341641 180 3.719
69 26 Wigby 2004 Mating Frequency Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 31 NO 180 F YES Indirect 0.288 0.011 1 0.2300000 0.1341641 180 0.6700000 2.1466253 180 3.719
69 26 Wigby 2004 Mating Frequency Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 900 M YES Indirect 0.053 0.002 1 0.0530000 0.2400000 900 0.0650000 0.2100000 900 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.009 0.126 1 91.0000000 68.9050989 15 91.5000000 35.8880723 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.235 0.127 1 83.0000000 54.5498700 15 68.0000000 68.9050989 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.259 0.127 1 98.0000000 54.5498700 15 81.0000000 71.7761447 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.094 0.126 1 90.5000000 49.5255398 15 86.0000000 43.0656868 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.119 0.126 1 76.0000000 85.4136122 15 84.5000000 48.8077784 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.397 0.129 1 96.5000000 68.9050989 15 73.5000000 40.1946410 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.057 0.126 1 88.0000000 22.9683663 15 91.0000000 68.9050989 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.201 0.127 1 92.0000000 28.7104579 15 83.0000000 54.5498700 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.132 0.127 1 88.0000000 89.0024194 15 98.0000000 54.5498700 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.006 0.126 1 91.0000000 114.8418315 15 90.5000000 49.5255398 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.171 0.127 1 89.0000000 60.2919615 15 76.0000000 85.4136122 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.118 0.126 1 88.5000000 63.1630073 15 96.5000000 68.9050989 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.113 0.126 1 88.0000000 22.9683663 15 91.5000000 35.8880723 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.442 0.129 1 92.0000000 28.7104579 15 68.0000000 68.9050989 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.084 0.126 1 88.0000000 89.0024194 15 81.0000000 71.7761447 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.056 0.126 1 91.0000000 114.8418315 15 86.0000000 43.0656868 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.080 0.126 1 89.0000000 60.2919615 15 84.5000000 48.8077784 15 3.719
69 26 Wigby 2004 Female Reproductive Success Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.276 0.127 1 88.5000000 63.1630073 15 73.5000000 40.1946410 15 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.174 0.007 1 25.5400000 9.6994845 300 27.2600000 10.0458947 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.091 0.007 1 24.0500000 10.3923049 300 25.0300000 11.0851252 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.251 0.007 1 24.9300000 10.3923049 300 27.5900000 10.7387150 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect -0.390 0.007 1 42.3600000 16.8008928 300 36.3500000 13.8564065 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect 0.485 0.007 1 33.3700000 18.5329436 300 43.3200000 22.3434554 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect 0.227 0.007 1 38.4700000 23.2094808 300 43.8100000 23.7290961 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.164 0.127 1 0.8200000 0.4880778 15 0.9000000 0.4593673 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.548 0.131 1 0.9100000 0.2583941 15 0.7200000 0.4019464 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.298 0.128 1 0.8800000 0.2583941 15 0.7600000 0.4880778 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct 0.007 0.007 1 22.2400000 10.0458947 300 22.3100000 10.2190998 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct -0.251 0.007 1 23.9000000 11.9511506 300 21.1700000 9.6994845 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct -0.070 0.007 1 24.2800000 10.7387150 300 23.5500000 10.2190998 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.124 0.007 1 24.2700000 10.2190998 300 25.5400000 9.6994845 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.140 0.007 1 22.7300000 8.8334591 300 24.0500000 10.3923049 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.095 0.007 1 24.0100000 9.1798693 300 24.9300000 10.3923049 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect 0.210 0.007 1 38.2400000 22.3434554 300 42.3600000 16.8008928 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect -0.457 0.007 1 41.2900000 16.1080725 300 33.3700000 18.5329436 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect -0.202 0.007 1 42.9300000 20.6114046 300 38.4700000 23.2094808 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.069 0.126 1 0.8600000 0.6316301 15 0.8200000 0.4880778 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.040 0.126 1 0.9000000 0.2296837 15 0.9100000 0.2583941 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.058 0.126 1 0.9200000 0.9187347 15 0.8800000 0.2583941 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct 0.061 0.007 1 21.6300000 10.0458947 300 22.2400000 10.0458947 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct 0.159 0.007 1 22.1700000 9.6994845 300 23.9000000 11.9511506 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 1.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct 0.141 0.007 1 22.7800000 10.5655099 300 24.2800000 10.7387150 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.292 0.007 1 24.2700000 10.2190998 300 27.2600000 10.0458947 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.232 0.007 1 22.7300000 8.8334591 300 25.0300000 11.0851252 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 300 F NO Indirect 0.359 0.007 1 24.0100000 9.1798693 300 27.5900000 10.7387150 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect -0.100 0.007 1 38.2400000 22.3434554 300 36.3500000 13.8564065 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect 0.104 0.007 1 41.2900000 16.1080725 300 43.3200000 22.3434554 300 3.719
69 26 Wigby 2004 Lifespan Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 26 NO 300 F NO Indirect 0.041 0.007 1 42.9300000 20.6114046 300 43.8100000 23.7290961 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct 0.071 0.126 1 0.8600000 0.6316301 15 0.9000000 0.4593673 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.537 0.131 1 0.9000000 0.2296837 15 0.7200000 0.4019464 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 22 NO 15 F NO Direct -0.211 0.127 1 0.9200000 0.9187347 15 0.7600000 0.4880778 15 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct 0.067 0.007 1 21.6300000 10.0458947 300 22.3100000 10.2190998 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct -0.103 0.007 1 22.1700000 9.6994845 300 21.1700000 9.6994845 300 3.719
69 26 Wigby 2004 Offspring Viability Unstressed 26 Wigby, S. and T. Chapman 2004 Drosophila melanogaster Fly 1.000 3.00 100.00 1 1 Not Blind 33 NO 300 M NO Direct 0.074 0.007 1 22.7800000 10.5655099 300 23.5500000 10.2190998 300 3.719


Study ID: An ID given to the published paper the effect size is sourced from (n = 69).

Group ID: An ID given to the research group that may have published several papers on the same species usuing the same or very similar experimental setup. [Was not used in analysis]

Species: The species used in the experimental evolution procedure (n = 15).

Taxon: The taxon to which the species belongs. One of the following: Beetle, fly, mouse, nematode, guppy, mite and cricket (taxa were selected arbitrarily based on the available data).

SS Strength, Ratios and SS Density’s (Column 7-9): Various ratios of the number of males to females and the total number of individuals kept together in an experiment [Was not used in any analysis]

Post cop and Pre cop: Whether a study allowed Pre/Post-copulatory sexual selection (1) or not (0).

Blinding: A binary classification, describing whether blind protocols were used during the experiment. Papers were assumed to be not blind unless declared otherwise.

Generations: The number of generations that the species was subject to differing levels of sexual selection, ranging from 1 to 162.

Enforced Monogamy: Whether the study had the low sexual selection treatment as enforced monogamy (YES) or not (NO). Not all studies compared enforced monogamy and SS+ treatments. Some used FB vs MB, where FB is the SS (low intensity).

n: Pooled sample size of the paired treatments.

Outcome: The fitness related outcome that was measured, e.g. fecundity, survival, or mating success (see Supplementary Table 1 for all 20 categories). We applied our own classifications rather than relying on those provided by the authors, because different papers sometimes used different names for the same trait.

Outcome Class: To help guide analysis the outcomes were classed into three categories; ambiguous, indirect and direct (see Supplementary Table 1).

Sex: A moderator variable with three levels, describing whether the effect size in question comes from a measurement of males (M), females (F), or individuals of both sexes (B).

Ambiguous: Is the fitness outcome ambiguous (YES) or not ambigous (NO). Ambiguous outcomes may be those that may not necessarily be directional, that is to say they may be a life history trait.

Environment: In the methods of the papers included in this study it was usually stated whether additional modifications to the experimental lines were made. Briefly, this was usually a modification that made conditions more stressful such as using a novel food source or elevated mutation load, the effect sizes from these experimental lines are labelled as ‘Stressed’. If it was clearly stated that there was no such modification it is labelled ‘Unstressed’. However, sometimes the paper was ambiguous in what lines had added stress or the results from stressed and unstressed lines were pooled together, in this case we label it as ‘Not Stated’.

g: Hedge’s g calculated using the compute.es package.

var.g: The within study variance associated with the effect size, g.

Positive Fitness: Whether the measurment used in the study is beneficial for fitness (1) or not (0). Note that g has already been multiplied by this column. We inverted all of the effect sizes pertaining to fitness outcomes that are expected to be negatively related to fitness by multiplying the effect size by -1.

mean/sd/n.low/high: The means, standard deviation and sample size for the low or high sexual selection treatments, used to calculate lnCVR (meta-analysis of variance). Rows without these values (NA) had hedges g’ derived from summary statistics (F, z, chi-square etc.).

JIF: Journal Impact factor at year of publication. Several impact factors were unable to be determined/found and are NA.We obtained the journal impact factor for each effect size at the time of publication using InCites Journal Citation Reports.


Tables of Sample Sizes

Here we present the number of effect sizes, publications, blind experiments, effect sizes in stresful conditions, male, female and both measures and different species used.

Supplementary Table 3: Table of effect sizes included in our meta-analysis. See the text following the data table for an explanation of each column.

n.blind.ones <- (sum(full_dataset$Blind == "Blind"))
full_dataset %>% 
  summarise(
    Effect_sizes_.Totalq = n(), 
    Publications = Study.ID %>% unique() %>% length(),
    Blind_experiments = n.blind.ones,
    Effect_sizes_.Enforced_monogamyq = (sum(Enforced.Monogamy == "YES")),
    Effect_sizes_.Ambiguousq = (sum(Outcome.Class == "Ambiguous")),
    Effect_sizes_.Indirectq = (sum(Outcome.Class == "Indirect")),
    Effect_sizes_.Directq = (sum(Outcome.Class == "Direct")),
    Effect_sizes_.Stressfulq = (sum(Environment == "Stressed")),
    Effect_sizes_.Benignq = (sum(Environment == "Unstressed")),         
    Effect_sizes_.Maleq = (sum(Sex == "M")),
    Effect_sizes_.Femaleq = (sum(Sex == "F")),
    Effect_sizes_.Both_sexesq = (sum(Sex == "B")),
    Different_species =  Species %>% unique() %>% length(),
    Effect_sizes_.Beetleq = sum(Taxon == "Beetle"),
    Effect_sizes_.Flyq = sum(Taxon == "Fly"),
    Effect_sizes_.Mouseq = sum(Taxon == "Mouse"),
    Effect_sizes_.Nematodeq = sum(Taxon == "Nematode"),
    Effect_sizes_.Miteq = sum(Taxon == "Mite"),
    Effect_sizes_.Cricketq = sum(Taxon == "Cricket"),
    Effect_sizes_.Guppyq = sum(Taxon == "Guppy")) %>% melt() %>%
  mutate(variable = gsub("_", " ", variable),
         variable = gsub("[.]", "(", variable),
         variable = gsub("q", ")", variable)) %>% 
  rename_("n" = "value", " " = "variable") %>% 
  pander(split.cell = 40, split.table = Inf)
n
Effect sizes (Total) 459
Publications 65
Blind experiments 54
Effect sizes (Enforced monogamy) 241
Effect sizes (Ambiguous) 144
Effect sizes (Indirect) 141
Effect sizes (Direct) 174
Effect sizes (Stressful) 92
Effect sizes (Benign) 337
Effect sizes (Male) 189
Effect sizes (Female) 219
Effect sizes (Both sexes) 51
Different species 15
Effect sizes (Beetle) 116
Effect sizes (Fly) 254
Effect sizes (Mouse) 40
Effect sizes (Nematode) 9
Effect sizes (Mite) 25
Effect sizes (Cricket) 6
Effect sizes (Guppy) 9



Supplementary Table 4: Table of fitness outcomes included in our meta-analysis by sex.

Outcome_and_sex <- as.data.frame.matrix(table(full_dataset$Outcome, full_dataset$Sex))
colnames(Outcome_and_sex) <- cbind("Both", "Female", "Male")
Outcome_and_sex %>% tibble::rownames_to_column("Parameters") %>% mutate(Total = Both+Female+Male) %>% pander(split.cell = 40, split.table = Inf)
Parameters Both Female Male Total
Behavioural Plasticity 0 2 0 2
Body Condition 0 0 1 1
Body Size 2 13 11 26
Both Reproductive Success 12 0 0 12
Development Rate 5 1 1 7
Early Fecundity 0 14 0 14
Ejaculate Quality and Production 0 0 23 23
Extinction Rate 4 0 0 4
Female Reproductive Success 0 102 0 102
Fitness Senescence 0 3 3 6
Immunity 5 15 15 35
Lifespan 0 35 3 38
Male Attractiveness 0 0 6 6
Male Reproductive Success 0 0 42 42
Mating Duration 0 1 9 10
Mating Frequency 0 6 5 11
Mating Latency 0 1 12 13
Mating Success 0 0 39 39
Mutant Frequency 6 0 2 8
Offspring Viability 15 26 15 56
Pesticide Resistance 2 0 0 2
Strength 0 0 2 2

Meta-Analysis

Overall effect of sexual selection on fitness

We can obtain an overall weghted grand mean and confidence intervals with a simple intercept only for both Bayesian and REML models. Notably, in both models the estimates are approximately the same, with Bayesian estimates being marginally wider. The priors for brms are set from a weakly non-informative student t-distribution: student_t(3, 0, 10). We also tested that using a stronger prior (e.g. standard normal distribution: normal(0, 1)) has negligible effects on the model results.

Run the Bayesian meta-analysis to get the overall effect

if(!file.exists("data/grand.mean.bayes.rds")){
  grand.mean.bayes <- brm(g | se(SE)  ~ 1 # Note that running se(SE, sigma = TRUE) gives different result due to a difference in priors
                          + (1|Study.ID)
                          + (1|Outcome)
                          + (1|Taxon), 
                          family = "gaussian", 
                          seed = 1,
                          cores = 4, chains = 4, iter = 4000, #Run 4 chains in parallel for 4000 iterations (2000 are burn in)
                          control = list(adapt_delta = 0.999, max_treedepth = 15),
                          data = full_dataset %>% mutate(SE = sqrt(var.g)))
  
  saveRDS(grand.mean.bayes, "data/grand.mean.bayes.rds") # Save to avoid re-running during knit
}
grand.mean.bayes <- readRDS("data/grand.mean.bayes.rds")

Run the REML meta-analysis to get the overall effect

forest.model <- rma.mv(g, var.g,
                       mods = ~ 1,
                       random = list(~ 1 | Study.ID,
                                      ~ 1 | Outcome,
                                      ~ 1 | Taxon),
                       method = "REML",
                       data = full_dataset)

Inspect the effect sizes esimates from these two models

Supplementary Table 5: These estimates are presented in the text of the Results section. The test statistic is either the p-value (REML) or Bayes factor (BF) comparing the effect size to zero (Bayesian).

pander(data.frame(
  Method = c("REML", "Bayesian"),
  Grand_mean_effect_size_g = c(forest.model$b, summary(grand.mean.bayes)$fixed[,"Estimate"]),
  Lower_95_CI = c(forest.model$ci.lb, summary(grand.mean.bayes)$fixed[,"l-95% CI"]),
  Upper_95_CI = c(forest.model$ci.ub, summary(grand.mean.bayes)$fixed[,"u-95% CI"]),
  Test_statistic = c(forest.model$pval, hypothesis(grand.mean.bayes, "Intercept > 0")$hypothesis$Evid.Ratio)), digits = 2) 
Method Grand_mean_effect_size_g Lower_95_CI Upper_95_CI Test_statistic
REML 0.24 0.055 0.43 0.011
Bayesian 0.25 -0.0074 0.51 35

Effect of sexual selection on direct, indirect and ambiguous measures of fitness

Supplementary Table 6: The predicted effect size for each of the three fitness trait classes (Ambiguous, Indirect and Direct) that are presented in Figure 1 in the manuscript. This table presents both Bayesian and REML predictions with some discrepencies in the estimated error margins. Figure 1 within the manuscript uses REML predictions.

if(!file.exists("data/grand.mean.class.bayes.rds")){
  grand.mean.class.bayes <- brm(g | se(SE)  ~ Outcome.Class # Note that running se(SE, sigma = TRUE) gives different result due to a difference in priors
                          + (1|Study.ID)
                          + (1|Taxon), 
                          family = "gaussian", 
                          seed = 1,
                          cores = 4, chains = 4, iter = 4000, #Run 4 chains in parallel for 4000 iterations (2000 are burn in)
                          control = list(adapt_delta = 0.9999, max_treedepth = 15),
                          data = full_dataset %>% mutate(SE = sqrt(var.g)))
  
  saveRDS(grand.mean.class.bayes, "data/grand.mean.class.bayes.rds") # Save to avoid re-running during knit
}
grand.mean.class.bayes <- readRDS("data/grand.mean.class.bayes.rds")

# Define new data for prediction
brms.newdata.class <- as.data.frame(expand.grid(Outcome.Class = unique(full_dataset$Outcome.Class)))

# Get average SE: useful if using predict, but not fitted
av.se.g.class <- full_dataset %>% group_by(Outcome.Class) %>% summarise(mean = mean(sqrt(var.g)))
brms.newdata.class <- left_join(av.se.g.class %>% rename(SE = mean), brms.newdata.class)

# Find the fitted values (i.e. predictions from the linear mixed model fit by brms)
brms.predict.class <- fitted(grand.mean.class.bayes, newdata = brms.newdata.class, re_formula = NA) %>% as.data.frame()
brms.predictions.class <- data.frame(brms.newdata.class$Outcome.Class, brms.predict.class$Estimate, brms.predict.class$Est.Error, brms.predict.class$Q2.5, brms.predict.class$Q97.5)

#Name columns
colnames(brms.predictions.class) <- c("Relationship to Fitness", "Bayes Prediction", "Bayes SE", "Bayes LCI", "Bayes UCI")

outcome.list.factor.class <-  c('Indirect', 'Ambiguous', 'Direct')

brms.predictions.class <- brms.predictions.class[match(outcome.list.factor.class, brms.predictions.class$`Relationship to Fitness`),]
rownames(brms.predictions.class) <- NULL
sample.sizes.outcome.class <- as.data.frame(table(full_dataset$Outcome.Class))
colnames(sample.sizes.outcome.class) <- c("Relationship to Fitness", "n")
fitness.class.predictions <- left_join(brms.predictions.class, sample.sizes.outcome.class, by = "Relationship to Fitness")

# Obtain Bayes Factor of likelihood that the outcome is greater than 0
BF.outcome.class.list <-  c('Ambiguous', 'Direct')
# Obtain BF for all components
Hypotheses <- list()
BFs <- list()
Hypotheses[["Indirect"]] <- hypothesis(grand.mean.class.bayes, "Intercept > 0") #Intercept in model, need to do it by itself
BFs[["Indirect"]] <- Hypotheses[["Indirect"]][["hypothesis"]][["Evid.Ratio"]]
for (i in BF.outcome.class.list){
  Hypotheses[[i]] <- hypothesis(grand.mean.class.bayes, paste("Intercept + Outcome.Class", i," > 0", sep = ""))
  BFs[[i]] <- Hypotheses[[i]][["hypothesis"]][["Evid.Ratio"]]
} #Loop over all fitness compoinents

# Now for REML. Not easy because the predict function for rma.mv has an odd interface
model.fitness.class.REML <- rma.mv(g, var.g, mods = ~ 1 + Outcome.Class,
                         random = list(~ 1 | Study.ID,
                                       ~ 1 | Taxon),
                         method = "REML",
                         data = full_dataset)

get.predictions.class <- function(newdata){
  Indirect <- 0; Ambiguous <- 0; Direct <- 0
  if(newdata[1] == 'Ambiguous') Ambiguous<-1
  if(newdata[1] == 'Direct') Direct<-1
    
  predict(model.fitness.class.REML, newmods=c(Ambiguous, Direct))
}
# Get the predictions for each combination of moderators
predictions.class <- as.data.frame(expand.grid(Outcome.Class = outcome.list.factor.class))
predictions.class <- cbind(predictions.class, do.call("rbind", apply(predictions.class, 1, get.predictions.class))) %>%
  select(Outcome.Class, pred, se, ci.lb, ci.ub) 
for(i in 2:5) predictions.class[,i] <- unlist(predictions.class[,i])

colnames(predictions.class) <- c("Relationship to Fitness", "REML Prediction", "REML SE", "REML LCI", "REML UCI")
predictions.class <- format(predictions.class, digits = 2)

fitness.class.predictions <- fitness.class.predictions %>% cbind.data.frame(as.data.frame(BFs) %>% t() %>% as.data.frame() %>% `colnames<-`("BF")) %>% `row.names<-`(NULL) %>% format(digits = 2)

left_join(fitness.class.predictions, predictions.class, by = "Relationship to Fitness") %>% pander(split.table = Inf, digits = 2)
Relationship to Fitness Bayes Prediction Bayes SE Bayes LCI Bayes UCI n BF REML Prediction REML SE REML LCI REML UCI
Indirect 0.24 0.098 0.0326 0.43 141 59 0.24 0.057 0.132 0.36
Ambiguous 0.20 0.098 -0.0016 0.39 144 38 0.21 0.058 0.093 0.32
Direct 0.13 0.097 -0.0790 0.31 174 11 0.13 0.057 0.019 0.24
pd <- position_dodge(0.3)
predictions.class[,2:5] <- sapply(predictions.class[,2:5], as.numeric)
forest.plot.class <- predictions.class %>%
  rename(Outcome.Class = "Relationship to Fitness",
         Pred = 'REML Prediction',
         LCI = 'REML LCI',
         UCI = 'REML UCI') %>%
  mutate(Outcome.Class = factor(Outcome.Class, levels = c("Direct", "Indirect", "Ambiguous"))) %>%
  ggplot(aes(x = Outcome.Class, y = Pred, colour = Outcome.Class, fill = Outcome.Class)) + 
  geom_hline(yintercept = 0, linetype = 2) + 
  geom_hline(yintercept = 0.23, linetype = 2, colour = "steelblue", size = 1) +
  geom_quasirandom(data = full_dataset %>% 
  mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female"),
         Outcome.Class = factor(Outcome.Class, levels = c("Direct", "Indirect", "Ambiguous"))),
                   aes(x = Outcome.Class, y = g), alpha=0.4) +
  geom_errorbar(mapping = aes(ymin = LCI, ymax = UCI), width = 0, position = pd, size=1, colour = "grey10") + 
  geom_point(position = pd, size=3.25, shape = 23, stroke = .75, color = "grey10") + 
  ylab("Standardized Mean Difference (g) \n[positive values indicate sexual selection improves fitness components]") +
  theme_minimal(14) +
  theme(panel.grid.major.y = element_blank(), 
        panel.grid.minor.y = element_blank(), 
        legend.position = "none",
        axis.text.y = element_text(size = 13, hjust = 1)) +
  scale_color_manual(values = c("Ambiguous" = "#a50f15", "Indirect" = "#fe9929", "Direct" = "#4daf4a"), 
                     name = "Relationship\nto fitness")+
  scale_fill_manual(values = c("Ambiguous" = "#a50f15", "Indirect" = "#fe9929", "Direct" = "#4daf4a"), 
                     name = "Relationship\nto fitness")+
  xlab("Relationship to Fitness\n")+
  coord_flip()

forest.plot.class

Figure 1: The effect sizes used in this meta-analysis (\(n\) = 459) were grouped into either direct, indirect or ambiguous measures of fitness. Overall, effect sizes were more often positive than negative. Predicted average values are presented as a diamond for each fitness-relationship category. The estimates presented here are from REML models with the grand mean across all effect sizes (\(\beta\) = 0.25) shown as the blue dotted line. Predictions from both Bayesian and REML models can be found in Supplementary Table 6.


Effect of Sexual Selection for different fitness components

Forest Plot

# Create new factor to order factors in a way where Ambig, Indirect and Direct are Grouped
full_dataset$Outcome_f = factor(full_dataset$Outcome, levels = c('Behavioural Plasticity', 'Body Size', 'Development Rate', 'Early Fecundity', 'Immunity', 'Male Attractiveness', 'Male Reproductive Success', 'Mating Duration', 'Pesticide Resistance', 'Mutant Frequency', 'Body Condition', 'Fitness Senescence', 'Lifespan', 'Mating Frequency', 'Mating Latency', 'Mating Success', 'Strength', 'Ejaculate Quality and Production', 'Both Reproductive Success', 'Extinction Rate', 'Female Reproductive Success', 'Offspring Viability'))

# define upper and lower bounds
full_dataset$lowerci <- full_dataset$g - 1.96*(sqrt(full_dataset$var.g))
full_dataset$upperci <- full_dataset$g + 1.96*(sqrt(full_dataset$var.g))



p.meta <- full_dataset %>% 
  mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female"),
         Outcome.Class = factor(Outcome.Class, levels = c("Ambiguous", "Indirect", "Direct"))) %>%
  
  ggplot(aes(y=reorder(AuthorYear, -g), x = g)) +
  scale_color_manual(values = c("Ambiguous" = "#a50f15", "Indirect" = "#fe9929", "Direct" = "#4daf4a"), 
                     name = "Relationship\nto fitness")+
  scale_shape_manual(values=c(21,22,24))+
  scale_fill_manual(values = c("Ambiguous" = "#a50f15", "Indirect" = "#fe9929", "Direct" = "#4daf4a"), 
                    name = "Relationship\nto fitness")+
  geom_errorbarh(aes(xmin = lowerci, 
                     xmax = upperci,
                     color = Outcome.Class), height = 0.1, show.legend = FALSE) +
  
  geom_point(aes(shape = Sex,
                 fill = Outcome.Class), 
             size = 1.75, 
             color = "grey20") +
  
  scale_x_continuous(limits=c(-3.35, 10), 
                     breaks = c(-3, -2, -1, 0, 1, 2, 3), 
                     name='Standardized Mean Difference (g) \n[positive values indicate sexual selection improves fitness components]') +
  
  ylab('Reference') + 
  
  geom_vline(xintercept=0, 
             color='black', 
             linetype='dashed')+
  
  facet_grid(Outcome_f~.,
             labeller = label_wrap_gen(width=23),
             scales= 'free', 
             space='free')+
  
  guides(fill = guide_legend(override.aes = list(shape = 21, colour = "grey20", size = 6)),
         shape = guide_legend(override.aes = list(size = 4.5)))+
  
  #Add theme specifying text size, margins, lines etc.
  theme_bw()+
  
  theme(strip.text.y = element_text(angle = 0, size = 8, margin = margin(t=15, r=15, b=15, l=15)), 
        strip.background = element_rect(colour = NULL,
                                        linetype = "blank",
                                        fill = "gray90"),
        text = element_text(size=11),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=12), 
        legend.title=element_text(size=12, 
                                  face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14))

knitr::include_graphics(path = "figures/ForestPlot_large.png") 


Supplementary Figure 1: Forest plot of raw effect sizes and their 95% confidence intervals, grouped according to measured fitness components and the sex of the individuals whose fitness trait was measured (male, female, or both sexes mixed together). Rows with multiple data points denote studies that provided multiple effect sizes. Positive values indicate fitness benefits of sexual selection.

Instead of running individual models for each fitness component we can run a model with the fitness components as predictors. In this case we maintain all of our fitness components and include study.id as a group level effect (to account for within study correlations in effect size). Using the brms package we can run a Bayesian model and generate fitted values for each fitness component.

if(!file.exists("data/components.brms.rds")){
  components.brms <- 
    brm(g | se(SE)  ~ Outcome #Note that running se(SE, sigma = TRUE) gives different result due to a difference in priors
        + (1|Study.ID)
        + (1|Taxon), 
        family = "gaussian", 
        seed = 1,
        cores = 4, chains = 4, iter = 4000, #Run 4 chains in parallel for 4000 iterations (2000 are burn in)
        control = list(adapt_delta = 0.999, max_treedepth = 15),
        data = full_dataset %>% mutate(SE = sqrt(var.g)))
  
  saveRDS(components.brms, "data/components.brms.rds") 
}

components.brms <- readRDS(file = "data/components.brms.rds") 

Supplementary Table 7: Summary of model predictions for 22 fitness components. In Supplementary Figure 1 these values are presented as a text overlay using the Bayesian values. Additionally, Bayes Factors (BF) are presented as the likelihood ratio that the effect size is greater than 0. Where values greater than 1 correspond to higher likelihood of the effect size being positive and values less than 1 suggest that the effect size is more likely to be negative. The right side of the table provides the REML estimates with SE and 95 % CIs.

# Define new data for prediction
brms.newdata <- as.data.frame(expand.grid(Outcome = unique(full_dataset$Outcome)))

# Get average SE: useful if using predict, but not fitted
av.se.g <- full_dataset %>% group_by(Outcome) %>% summarise(mean = mean(sqrt(var.g)))
brms.newdata$SE <- av.se.g$mean

# Find the fitted values (i.e. predictions from the linear mixed model fit by brms)
brms.predict <- fitted(components.brms, newdata = brms.newdata, re_formula = NA) %>% as.data.frame()
brms.predictions <- data.frame(brms.newdata$Outcome, brms.predict$Estimate, brms.predict$Est.Error, brms.predict$Q2.5, brms.predict$Q97.5)

#Name columns
colnames(brms.predictions) <- c("Fitness Component", "Bayes Prediction", "Bayes SE", "Bayes LCI", "Bayes UCI")

outcome.list.factor <-  c('Behavioural Plasticity', 'Body Size', 'Development Rate', 'Early Fecundity', 'Immunity', 'Male Attractiveness', 'Male Reproductive Success', 'Mating Duration', 'Pesticide Resistance', 'Mutant Frequency', 'Body Condition', 'Fitness Senescence', 'Lifespan', 'Mating Frequency', 'Mating Latency', 'Mating Success', 'Strength', 'Ejaculate Quality and Production', 'Both Reproductive Success', 'Extinction Rate', 'Female Reproductive Success', 'Offspring Viability')

brms.predictions <- brms.predictions[match(outcome.list.factor, brms.predictions$`Fitness Component`),]
rownames(brms.predictions) <- NULL
sample.sizes.outcomes <- as.data.frame(table(full_dataset$Outcome))
colnames(sample.sizes.outcomes) <- c("Fitness Component", "n")
fitness.component.predictions <- left_join(brms.predictions, sample.sizes.outcomes, by = "Fitness Component")

# Obtain Bayes Factor of likelihood that the outcome is greater than 0
BF.outcome.list <-  c('Body Size', 'Development Rate', 'Early Fecundity', 'Immunity', 'Male Attractiveness', 'Male Reproductive Success', 'Mating Duration', 'Pesticide Resistance', 'Mutant Frequency', 'Body Condition', 'Fitness Senescence', 'Lifespan', 'Mating Frequency', 'Mating Latency', 'Mating Success', 'Strength', 'Ejaculate Quality and Production', 'Both Reproductive Success', 'Extinction Rate', 'Female Reproductive Success', 'Offspring Viability')
# Obtain BF for all components
Hypotheses <- list()
BFs <- list()
Hypotheses[["Behavioural Plasticity"]] <- hypothesis(components.brms, "Intercept > 0") #Intercept in model, need to do it by itself
BFs[["Behavioural Plasticity"]] <- Hypotheses[["Behavioural Plasticity"]][["hypothesis"]][["Evid.Ratio"]]
for (i in BF.outcome.list){
  Hypotheses[[i]] <- hypothesis(components.brms, paste("Intercept + Outcome", i," > 0", sep = ""))
  BFs[[i]] <- Hypotheses[[i]][["hypothesis"]][["Evid.Ratio"]]
} #Loop over all fitness compoinents

# Now for REML. Not easy because the predict function for rma.mv has an odd interface
model.fitness.components.REML <- rma.mv(g, var.g, mods = ~ 1 + Outcome,
                         random = list(~ 1 | Study.ID,
                                       ~ 1 | Taxon),
                         method = "REML",
                         data = full_dataset)

get.predictions.outcomes <- function(newdata){
  `Body Condition`<-0; `Body Size`<-0; `Development Rate`<-0; `Early Fecundity`<-0; `Ejaculate Quality and Production`<-0; `Extinction Rate`<-0; `Fitness Senescence`<-0; Immunity<-0; Lifespan<-0; `Male Attractiveness`<-0; `Male Reproductive Success`<-0; `Mating Duration`<-0; `Mating Frequency`<-0; `Mating Latency`<-0; `Mating Success`<-0; `Mutant Frequency`<-0; `Offspring Viability`<-0; `Pesticide Resistance`<-0; `Female Reproductive Success`<-0; `Both Reproductive Success`<-0; Strength<-0
  
  if(newdata[1] == 'Body Condition')`Body Condition`<-1
  if(newdata[1] == 'Body Size') `Body Size`<-1
  if(newdata[1] == 'Both Reproductive Success') `Both Reproductive Success`<-1
  if(newdata[1] == 'Development Rate') `Development Rate`<-1
  if(newdata[1] == 'Early Fecundity') `Early Fecundity`<-1
  if(newdata[1] == 'Ejaculate Quality and Production')`Ejaculate Quality and Production`<-1
  if(newdata[1] == 'Extinction Rate')`Extinction Rate`<-1
  if(newdata[1] == 'Female Reproductive Success')`Female Reproductive Success`<-1
  if(newdata[1] == 'Fitness Senescence')`Fitness Senescence`<-1
  if(newdata[1] == 'Immunity')Immunity<-1
  if(newdata[1] == 'Lifespan')Lifespan<-1
  if(newdata[1] == 'Male Attractiveness')`Male Attractiveness`<-1
  if(newdata[1] == 'Male Reproductive Success')`Male Reproductive Success`<-1
  if(newdata[1] == 'Mating Duration')`Mating Duration`<-1
  if(newdata[1] == 'Mating Frequency')`Mating Frequency`<-1
  if(newdata[1] == 'Mating Latency')`Mating Latency`<-1
  if(newdata[1] == 'Mating Success')`Mating Success`<-1
  if(newdata[1] == 'Mutant Frequency')`Mutant Frequency`<-1
  if(newdata[1] == 'Offspring Viability')`Offspring Viability`<-1
  if(newdata[1] == 'Pesticide Resistance')`Pesticide Resistance`<-1
  if(newdata[1] == 'Strength')Strength<-1

  predict(model.fitness.components.REML, newmods=c(`Body Condition`,`Body Size`,`Both Reproductive Success`,`Development Rate`,`Early Fecundity`,`Ejaculate Quality and Production`,`Extinction Rate`,`Female Reproductive Success`,`Fitness Senescence`,`Immunity`,`Lifespan`,`Male Attractiveness`,`Male Reproductive Success`,`Mating Duration`,`Mating Frequency`,`Mating Latency`,`Mating Success`,`Mutant Frequency`,`Offspring Viability`,`Pesticide Resistance`,`Strength`))
}

outcome.list.model.levels <- c('Behavioural Plasticity' ,'Body Condition','Body Size','Both Reproductive Success','Development Rate','Early Fecundity','Ejaculate Quality and Production','Extinction Rate','Female Reproductive Success','Fitness Senescence','Immunity','Lifespan','Male Attractiveness','Male Reproductive Success','Mating Duration','Mating Frequency','Mating Latency','Mating Success','Mutant Frequency','Offspring Viability','Pesticide Resistance','Strength')

# Get the predictions for each combination of moderators
predictions.outcomes <- as.data.frame(expand.grid(Outcome = outcome.list.model.levels))
predictions.outcomes <- cbind(predictions.outcomes, do.call("rbind", apply(predictions.outcomes, 1, get.predictions.outcomes))) %>%
  select(Outcome, pred, se, ci.lb, ci.ub) 
for(i in 2:5) predictions.outcomes[,i] <- unlist(predictions.outcomes[,i])

colnames(predictions.outcomes) <- c("Fitness Component", "REML Prediction", "REML SE", "REML LCI", "REML UCI")
predictions.outcomes <- format(predictions.outcomes, digits = 2)

fitness.component.predictions <- fitness.component.predictions %>% cbind.data.frame(as.data.frame(BFs) %>% t() %>% as.data.frame() %>% `colnames<-`("BF")) %>% `row.names<-`(NULL) %>% format(digits = 2)

left_join(fitness.component.predictions, predictions.outcomes, by = "Fitness Component") %>% pander(split.table = Inf, digits = 2)
Fitness Component Bayes Prediction Bayes SE Bayes LCI Bayes UCI n BF REML Prediction REML SE REML LCI REML UCI
Behavioural Plasticity 0.282 0.19 -0.090 0.66 2 1.5e+01 0.279 0.172 -0.057 0.616
Body Size 0.380 0.11 0.159 0.62 26 2.2e+02 0.378 0.078 0.225 0.532
Development Rate 0.517 0.15 0.223 0.82 7 6.7e+02 0.515 0.125 0.270 0.761
Early Fecundity 0.281 0.16 -0.027 0.59 14 2.7e+01 0.280 0.134 0.017 0.543
Immunity -0.422 0.14 -0.702 -0.15 35 2.6e-03 -0.419 0.111 -0.636 -0.201
Male Attractiveness 0.302 0.14 0.031 0.59 6 5.8e+01 0.298 0.111 0.081 0.515
Male Reproductive Success 0.155 0.12 -0.072 0.39 42 1.4e+01 0.152 0.080 -0.005 0.310
Mating Duration 0.422 0.12 0.186 0.67 10 3.1e+02 0.420 0.089 0.247 0.594
Pesticide Resistance 1.051 0.49 0.095 2.01 2 6.4e+01 1.076 0.457 0.180 1.973
Mutant Frequency 0.319 0.36 -0.387 1.02 8 4.5e+00 0.294 0.334 -0.361 0.949
Body Condition -1.235 0.32 -1.871 -0.63 1 0.0e+00 -1.227 0.305 -1.825 -0.629
Fitness Senescence 0.587 0.12 0.363 0.83 6 1.1e+03 0.585 0.083 0.423 0.748
Lifespan 0.190 0.11 -0.025 0.42 38 2.5e+01 0.188 0.076 0.038 0.337
Mating Frequency 0.333 0.12 0.113 0.57 11 1.4e+02 0.330 0.080 0.173 0.487
Mating Latency 0.722 0.12 0.499 0.96 13 8.0e+03 0.720 0.080 0.563 0.877
Mating Success -0.083 0.11 -0.303 0.15 39 2.4e-01 -0.085 0.078 -0.238 0.068
Strength 0.212 0.17 -0.111 0.53 2 1.0e+01 0.211 0.145 -0.074 0.496
Ejaculate Quality and Production 0.308 0.12 0.066 0.55 23 9.4e+01 0.308 0.088 0.137 0.480
Both Reproductive Success 0.141 0.13 -0.101 0.40 12 8.0e+00 0.140 0.095 -0.046 0.327
Extinction Rate 0.348 0.20 -0.053 0.73 4 2.3e+01 0.350 0.185 -0.012 0.712
Female Reproductive Success 0.170 0.11 -0.044 0.40 102 1.8e+01 0.168 0.074 0.022 0.314
Offspring Viability 0.173 0.11 -0.041 0.40 56 1.9e+01 0.171 0.075 0.024 0.318
# saveRDS(left_join(fitness.component.predictions, predictions.outcomes, by = "Fitness Component"), "PDF_RDS_files/ST7.rds")

Supplementary Table 8: In some instances it may be beneficial to the reader to obtain average effect sizes of each fitness trait entirely independently of other traits. For this reason we present a summary of independent model estimates for 16 fitness components with a sample size greater than 3 effect sizes (n>3). Unlike above where estimates were generated based on predictions from a single model, here we run individual meta-analyses for each fitness related trait. Independent models generally reduce the power and significance of some of the estimates with ‘Extinction rate’ and ‘Ejaculate quality and production’ the only two traits with p-values < 0.05.

#Excluding those with 3 or less effect sizes.

outcome.list <- as.list(c('Body Size', 'Development Rate', 'Early Fecundity', 'Immunity', 'Male Attractiveness', 'Male Reproductive Success', 'Mating Duration', 'Mutant Frequency', 'Fitness Senescence', 'Lifespan', 'Mating Frequency', 'Mating Latency', 'Mating Success', 'Ejaculate Quality and Production', 'Both Reproductive Success', 'Extinction Rate', 'Female Reproductive Success', 'Offspring Viability'))
names(outcome.list) <- c('Body Size', 'Development Rate', 'Early Fecundity', 'Immunity', 'Male Attractiveness', 'Male Reproductive Success', 'Mating Duration', 'Mutant Frequency', 'Fitness Senescence', 'Lifespan', 'Mating Frequency', 'Mating Latency', 'Mating Success', 'Ejaculate Quality and Production', 'Both Reproductive Success', 'Extinction Rate', 'Female Reproductive Success', 'Offspring Viability')
outcome.models <-  llply(outcome.list, function(x) rma.mv(g, var.g, 
                          mods = ~ 1, 
                          method = "REML",
                          random = list(~ 1 | Study.ID,
                                       ~ 1 | Taxon),
                          subset = (Outcome_f == x),
                          data = full_dataset))

df.list <- as.data.frame(do.call("rbind", outcome.models)) # data frame of model results

simple.frame <- subset(df.list, select=c("b", "zval", "ci.lb", "ci.ub", "k", "pval"))
# simple.frame$vi <- as.matrix(simple.frame$vi)
# simple.frame$W <- diag(1/(simple.frame$vi))
# 
# XO <- model.matrix(model.complete2)
# PO <- W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
# 100 * sum(model.complete2$sigma2) / (sum(model.complete2$sigma2) + (model.complete2$k-model.complete2$p)/sum(diag(P)))

#I couldn't get mapply to work when calculating I2 so I calculated them manually.

#Body Size 
restricted.dataBS <- full_dataset %>% filter(full_dataset$Outcome == "Body Size")

#Run estimate of heterogeneity
WBS = diag(1/restricted.dataBS$var.g)
XBS = model.matrix(outcome.models[["Body Size"]])
PBS = WBS - WBS %*% XBS %*% solve(t(XBS) %*% WBS %*% XBS) %*% t(XBS) %*% WBS
BodySizeI2 <- 100 * sum(outcome.models[["Body Size"]]$sigma2) / (sum(outcome.models[["Body Size"]]$sigma2) + (outcome.models[["Body Size"]]$k-outcome.models[["Body Size"]]$p)/sum(diag(PBS)))


#Development Rate 
restricted.dataDR <- full_dataset %>% filter(full_dataset$Outcome == "Development Rate")

#Run estimate of heterogeneity
W = diag(1/restricted.dataDR$var.g)
X = model.matrix(outcome.models[["Development Rate"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
DevelopmentRateI2 <- 100 * sum(outcome.models[["Development Rate"]]$sigma2) / (sum(outcome.models[["Development Rate"]]$sigma2) + (outcome.models[["Development Rate"]]$k-outcome.models[["Development Rate"]]$p)/sum(diag(P)))



#Early Fecundity 
restricted.dataEF <- full_dataset %>% filter(full_dataset$Outcome == "Early Fecundity")

#Run estimate of heterogeneity
W = diag(1/restricted.dataEF$var.g)
X = model.matrix(outcome.models[["Early Fecundity"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
EarlyFecundityI2 <- 100 * sum(outcome.models[["Early Fecundity"]]$sigma2) / (sum(outcome.models[["Early Fecundity"]]$sigma2) + (outcome.models[["Early Fecundity"]]$k-outcome.models[["Early Fecundity"]]$p)/sum(diag(P)))


#Immunity
restricted.dataI <- full_dataset %>% filter(full_dataset$Outcome == "Immunity")

#Run estimate of heterogeneity
W = diag(1/restricted.dataI$var.g)
X = model.matrix(outcome.models[["Immunity"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
ImmunityI2 <- 100 * sum(outcome.models[["Immunity"]]$sigma2) / (sum(outcome.models[["Immunity"]]$sigma2) + (outcome.models[["Immunity"]]$k-outcome.models[["Immunity"]]$p)/sum(diag(P)))


#Mating Duration
restricted.dataMD <- full_dataset %>% filter(full_dataset$Outcome == "Mating Duration")

#Run estimate of heterogeneity
W = diag(1/restricted.dataMD$var.g)
X = model.matrix(outcome.models[["Mating Duration"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MatingDurationI2 <- 100 * sum(outcome.models[["Mating Duration"]]$sigma2) / (sum(outcome.models[["Mating Duration"]]$sigma2) + (outcome.models[["Mating Duration"]]$k-outcome.models[["Mating Duration"]]$p)/sum(diag(P)))


#Mutant Frequency
restricted.dataMF <- full_dataset %>% filter(full_dataset$Outcome == "Mutant Frequency")

#Run estimate of heterogeneity
W = diag(1/restricted.dataMF$var.g)
X = model.matrix(outcome.models[["Mutant Frequency"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MutantFrequencyI2 <- 100 * sum(outcome.models[["Mutant Frequency"]]$sigma2) / (sum(outcome.models[["Mutant Frequency"]]$sigma2) + (outcome.models[["Mutant Frequency"]]$k-outcome.models[["Mutant Frequency"]]$p)/sum(diag(P)))


#Fitness Senescence
restricted.dataFS <- full_dataset %>% filter(full_dataset$Outcome == "Fitness Senescence")

#Run estimate of heterogeneity
W = diag(1/restricted.dataFS$var.g)
X = model.matrix(outcome.models[["Fitness Senescence"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
FitnessSenescenceI2 <- 100 * sum(outcome.models[["Fitness Senescence"]]$sigma2) / (sum(outcome.models[["Fitness Senescence"]]$sigma2) + (outcome.models[["Fitness Senescence"]]$k-outcome.models[["Fitness Senescence"]]$p)/sum(diag(P)))


#Lifespan
restricted.dataL <- full_dataset %>% filter(full_dataset$Outcome == "Lifespan")

#Run estimate of heterogeneity
W = diag(1/restricted.dataL$var.g)
X = model.matrix(outcome.models[["Lifespan"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
LifespanI2 <- 100 * sum(outcome.models[["Lifespan"]]$sigma2) / (sum(outcome.models[["Lifespan"]]$sigma2) + (outcome.models[["Lifespan"]]$k-outcome.models[["Lifespan"]]$p)/sum(diag(P)))


#Male Attractiveness
restricted.dataMA <- full_dataset %>% filter(full_dataset$Outcome == "Male Attractiveness")

#Run estimate of heterogeneity
W = diag(1/restricted.dataMA$var.g)
X = model.matrix(outcome.models[["Male Attractiveness"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MaleAttractivenessI2 <- 100 * sum(outcome.models[["Male Attractiveness"]]$sigma2) / (sum(outcome.models[["Male Attractiveness"]]$sigma2) + (outcome.models[["Male Attractiveness"]]$k-outcome.models[["Male Attractiveness"]]$p)/sum(diag(P)))

#Male Reproductive Success
restricted.dataMRS <- full_dataset %>% filter(full_dataset$Outcome == "Male Reproductive Success")

#Run estimate of heterogeneity
W = diag(1/restricted.dataMRS$var.g)
X = model.matrix(outcome.models[["Male Reproductive Success"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MaleReproductiveSuccessI2 <- 100 * sum(outcome.models[["Male Reproductive Success"]]$sigma2) / (sum(outcome.models[["Male Reproductive Success"]]$sigma2) + (outcome.models[["Male Reproductive Success"]]$k-outcome.models[["Male Reproductive Success"]]$p)/sum(diag(P)))


#Mating Frequency
restricted.dataMF <- full_dataset %>% filter(full_dataset$Outcome == "Mating Frequency")

#Run estimate of heterogeneity
W = diag(1/restricted.dataMF$var.g)
X = model.matrix(outcome.models[["Mating Frequency"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MatingFrequencyI2 <- 100 * sum(outcome.models[["Mating Frequency"]]$sigma2) / (sum(outcome.models[["Mating Frequency"]]$sigma2) + (outcome.models[["Mating Frequency"]]$k-outcome.models[["Mating Frequency"]]$p)/sum(diag(P)))

#Mating Latency
restricted.dataML <- full_dataset %>% filter(full_dataset$Outcome == "Mating Latency")

#Run estimate of heterogeneity
W = diag(1/restricted.dataML$var.g)
X = model.matrix(outcome.models[["Mating Latency"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MatingLatencyI2 <- 100 * sum(outcome.models[["Mating Latency"]]$sigma2) / (sum(outcome.models[["Mating Latency"]]$sigma2) + (outcome.models[["Mating Latency"]]$k-outcome.models[["Mating Latency"]]$p)/sum(diag(P)))

#Mating Success
restricted.dataMS <- full_dataset %>% filter(full_dataset$Outcome == "Mating Success")

#Run estimate of heterogeneity
W = diag(1/restricted.dataMS$var.g)
X = model.matrix(outcome.models[["Mating Success"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
MatingSuccessI2 <- 100 * sum(outcome.models[["Mating Success"]]$sigma2) / (sum(outcome.models[["Mating Success"]]$sigma2) + (outcome.models[["Mating Success"]]$k-outcome.models[["Mating Success"]]$p)/sum(diag(P)))

#Ejaculate Quality and Production
restricted.dataEQ <- full_dataset %>% filter(full_dataset$Outcome == "Ejaculate Quality and Production")

#Run estimate of heterogeneity
W = diag(1/restricted.dataEQ$var.g)
X = model.matrix(outcome.models[["Ejaculate Quality and Production"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
EjaculateQualityI2 <- 100 * sum(outcome.models[["Ejaculate Quality and Production"]]$sigma2) / (sum(outcome.models[["Ejaculate Quality and Production"]]$sigma2) + (outcome.models[["Ejaculate Quality and Production"]]$k-outcome.models[["Ejaculate Quality and Production"]]$p)/sum(diag(P)))

#Extinction Rate
restricted.dataER <- full_dataset %>% filter(full_dataset$Outcome == "Extinction Rate")

#Run estimate of heterogeneity
W = diag(1/restricted.dataER$var.g)
X = model.matrix(outcome.models[["Extinction Rate"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
ExtinctionRateI2 <- 100 * sum(outcome.models[["Extinction Rate"]]$sigma2) / (sum(outcome.models[["Extinction Rate"]]$sigma2) + (outcome.models[["Extinction Rate"]]$k-outcome.models[["Extinction Rate"]]$p)/sum(diag(P)))


#Offspring Viability
restricted.dataOV <- full_dataset %>% filter(full_dataset$Outcome == "Offspring Viability")

#Run estimate of heterogeneity
W = diag(1/restricted.dataOV$var.g)
X = model.matrix(outcome.models[["Offspring Viability"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
OffspringViabilityI2 <- 100 * sum(outcome.models[["Offspring Viability"]]$sigma2) / (sum(outcome.models[["Offspring Viability"]]$sigma2) + (outcome.models[["Offspring Viability"]]$k-outcome.models[["Offspring Viability"]]$p)/sum(diag(P)))

#Both Reproductive Success
restricted.dataBRS <- full_dataset %>% filter(full_dataset$Outcome == "Both Reproductive Success")

#Run estimate of heterogeneity
W = diag(1/restricted.dataBRS$var.g)
X = model.matrix(outcome.models[["Both Reproductive Success"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
BothReproductiveSuccessI2 <- 100 * sum(outcome.models[["Both Reproductive Success"]]$sigma2) / (sum(outcome.models[["Both Reproductive Success"]]$sigma2) + (outcome.models[["Both Reproductive Success"]]$k-outcome.models[["Both Reproductive Success"]]$p)/sum(diag(P)))


#Female Reproductive Success
restricted.dataFRS <- full_dataset %>% filter(full_dataset$Outcome == "Female Reproductive Success")

#Run estimate of heterogeneity
W = diag(1/restricted.dataFRS$var.g)
X = model.matrix(outcome.models[["Female Reproductive Success"]])
P = W - W %*% X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W
FemaleReproductiveSuccessI2 <- 100 * sum(outcome.models[["Female Reproductive Success"]]$sigma2) / (sum(outcome.models[["Female Reproductive Success"]]$sigma2) + (outcome.models[["Female Reproductive Success"]]$k-outcome.models[["Female Reproductive Success"]]$p)/sum(diag(P)))


simple.frame$I2 <- c(BodySizeI2, DevelopmentRateI2, EarlyFecundityI2, ImmunityI2, MaleAttractivenessI2, MaleReproductiveSuccessI2, MatingDurationI2, MutantFrequencyI2, FitnessSenescenceI2, LifespanI2, MatingFrequencyI2, MatingLatencyI2, MatingSuccessI2, EjaculateQualityI2, BothReproductiveSuccessI2, ExtinctionRateI2, FemaleReproductiveSuccessI2, OffspringViabilityI2)


outcome.frame <- format(simple.frame, digits = 2)
outcome.frame <- add_rownames(outcome.frame, "Outcome")
outcome.frame$b <- as.numeric(outcome.frame$b)
outcome.frame$k <- as.numeric(outcome.frame$k)
outcome.frame$ci.lb <- as.numeric(outcome.frame$ci.lb)
outcome.frame$ci.ub <- as.numeric(outcome.frame$ci.ub)
outcome.frame$I2 <- as.numeric(outcome.frame$I2)
outcome.frame$Class <- c("Ambiguous", "Ambiguous", "Ambiguous", "Ambiguous", "Ambiguous", "Ambiguous", "Ambiguous", "Indirect", "Indirect", "Indirect", "Indirect", "Indirect", "Indirect", "Indirect", "Direct", "Direct", "Direct", "Direct")

outcome.frame %>% rename(beta = b, n = k) %>% filter(Outcome != "Behavioural Plasticity" & Outcome != "Pesticide Resistance" & Outcome != "Strength") %>% pander(split.cell = 40, split.table = Inf)
Outcome beta zval ci.lb ci.ub n pval I2 Class
Body Size 0.28 1.2 -0.16 0.72 26 0.22 97 Ambiguous
Development Rate 0.66 1.1 -0.53 1.8 7 0.28 95 Ambiguous
Early Fecundity -0.0022 -0.0095 -0.45 0.44 14 0.99 49 Ambiguous
Immunity -0.29 -1.3 -0.73 0.15 35 0.19 90 Ambiguous
Male Attractiveness 0.27 0.3 -1.5 2 6 0.76 99 Ambiguous
Male Reproductive Success 0.3 2.1 0.018 0.58 42 0.037 84 Ambiguous
Mating Duration 0.23 0.94 -0.25 0.7 10 0.35 91 Ambiguous
Mutant Frequency 0.25 1.1 -0.21 0.71 8 0.29 88 Indirect
Fitness Senescence 0.096 0.75 -0.15 0.35 6 0.45 81 Indirect
Lifespan -0.076 -0.71 -0.29 0.13 38 0.48 89 Indirect
Mating Frequency 0.69 1.1 -0.57 1.9 11 0.29 99 Indirect
Mating Latency 0.28 1.9 -0.0083 0.58 13 0.057 90 Indirect
Mating Success 0.39 1.8 -0.037 0.82 39 0.073 93 Indirect
Ejaculate Quality and Production 0.5 3.6 0.23 0.77 23 0.00031 83 Indirect
Both Reproductive Success 0.1 0.6 -0.24 0.45 12 0.55 87 Direct
Extinction Rate 0.62 4.9 0.37 0.87 4 9.4e-07 3e-08 Direct
Female Reproductive Success 0.071 0.9 -0.084 0.23 102 0.37 82 Direct
Offspring Viability 0.13 1.5 -0.042 0.31 56 0.14 94 Direct
# saveRDS(outcome.frame %>% rename(beta = b, n = k) %>% filter(Outcome != "Behavioural Plasticity" & Outcome != "Pesticide Resistance" & Outcome != "Strength"), "PDF_RDS_files/ST8.rds")

Meta-analyses including many moderator variables

We collected data from fitness components that were deemed ambiguous as well as unambiguous. The ambiguous outcomes are likely to add heterogeneity to the models and may not help us in answering questions of the fitness effects of sexual selection. A REML model utilising our complete dataset with many moderator variables would thus be:

model.preliminary <- rma.mv(g, var.g, 
                         mods = ~ 1 + Sex * Environment + Taxon + Outcome.Class + log(Generations) + Blinding + Enforced.Monogamy, 
                         random = list(~ 1 | Study.ID, 
                                       ~ 1 | Outcome), 
                         method = "REML", 
                         data = full_dataset)

summary(model.preliminary, digits = 2)
## 
## Multivariate Meta-Analysis Model (k = 459; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -1676.23   3352.46   3396.46   3486.32   3398.89  
## 
## Variance Components: 
## 
##            estim  sqrt  nlvls  fixed    factor
## sigma^2.1   0.24  0.49     65     no  Study.ID
## sigma^2.2   0.11  0.33     22     no   Outcome
## 
## Test for Residual Heterogeneity: 
## QE(df = 439) = 5469.94, p-val < .01
## 
## Test of Moderators (coefficient(s) 2:20): 
## QM(df = 19) = 58.44, p-val < .01
## 
## Model Results:
## 
##                             estimate    se   zval  pval  ci.lb  ci.ub    
## intrcpt                         0.45  0.29   1.57  0.12  -0.11   1.01    
## SexF                            0.12  0.05   2.70  <.01   0.03   0.21  **
## SexM                            0.11  0.04   2.56  0.01   0.03   0.20   *
## EnvironmentNot Stated           0.04  0.15   0.27  0.79  -0.25   0.34    
## EnvironmentStressed             0.03  0.06   0.49  0.62  -0.09   0.15    
## TaxonCricket                    0.11  0.56   0.20  0.85  -0.99   1.21    
## TaxonFly                       -0.17  0.16  -1.04  0.30  -0.49   0.15    
## TaxonGuppy                     -0.29  0.51  -0.57  0.57  -1.30   0.71    
## TaxonMite                       0.01  0.25   0.03  0.98  -0.49   0.50    
## TaxonMouse                     -0.29  0.21  -1.37  0.17  -0.70   0.13    
## TaxonNematode                  -0.32  0.52  -0.61  0.54  -1.34   0.70    
## Outcome.ClassAmbiguous          0.04  0.17   0.22  0.83  -0.29   0.36    
## Outcome.ClassDirect             0.03  0.21   0.15  0.88  -0.38   0.45    
## log(Generations)               -0.02  0.05  -0.45  0.66  -0.13   0.08    
## BlindingNot Blind              -0.05  0.22  -0.24  0.81  -0.47   0.37    
## Enforced.MonogamyYES           -0.13  0.09  -1.47  0.14  -0.30   0.04    
## SexF:EnvironmentNot Stated      0.12  0.13   0.96  0.34  -0.13   0.38    
## SexM:EnvironmentNot Stated      0.08  0.12   0.67  0.50  -0.16   0.32    
## SexF:EnvironmentStressed        0.09  0.07   1.38  0.17  -0.04   0.22    
## SexM:EnvironmentStressed       -0.13  0.07  -1.88  0.06  -0.26   0.01   .
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Here we can also run a Bayesian model alongside the REML model (metafor). The R2 for this model is 0.36 (95% CIs = 0.33-0.4).

if(!file.exists("data/brms.preliminary.rds")){
  brms.preliminary <- brm(g | se(SE)  ~ 1 + Sex * Environment + log(Generations) + Blinding + Enforced.Monogamy #Note that running se(SE, sigma = TRUE) gives different result due to a difference in priors
                + (1|Study.ID) #group level effects
                + (1|Outcome)
                + (1|Taxon), 
                family = "gaussian", 
                seed = 1,
                cores = 4, chains = 4, iter = 4000, #Run 4 chains in parallel for 4000 iterations (2000 are burn in)
                control = list(adapt_delta = 0.999, max_treedepth = 15),
                data = full_dataset %>% mutate(SE = sqrt(var.g)))
  saveRDS(brms.preliminary, file = "data/brms.preliminary.rds") 
}
brms.preliminary <- readRDS(file = "data/brms.preliminary.rds") # Avoid re-running model above


Supplementary Table 9: Bayesian model results for a preliminary model that explores many covariates collected in the dataset.

#Plot model results
prelim.results.bayesplot <- bayesplot::mcmc_areas(posterior_samples(brms.preliminary)[,1:11]) + 
  geom_vline(xintercept = 0, linetype = 2) +
  
  theme_bw()+
  
  theme(panel.spacing = unit(0.1, "lines"),
        text = element_text(size=16),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=16), 
        legend.title=element_text(size=16, 
                                  face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14),
        axis.title.y = element_text(size = 16, hjust = 0.35, margin = margin(r=-10)),
        axis.text.y = element_text(angle = 0),
        plot.title = element_text(size = 16))

make_text_summary(brms.preliminary) %>% 
  add_significance_stars() %>% tibble::rownames_to_column("Model Parameter") %>% pander()
Model Parameter Estimate Est.Error Q2.5 Q97.5
b_Intercept 0.395 0.251 -0.095 0.899
b_SexF 0.122 0.046 0.031 0.211 *
b_SexM 0.112 0.044 0.025 0.198 *
b_EnvironmentNotStated 0.028 0.146 -0.262 0.315
b_EnvironmentStressed 0.03 0.06 -0.088 0.146
b_logGenerations -0.034 0.048 -0.127 0.061
b_BlindingNotBlind -0.065 0.201 -0.463 0.327
b_Enforced.MonogamyYES -0.133 0.086 -0.301 0.034
b_SexF:EnvironmentNotStated 0.122 0.127 -0.13 0.374
b_SexM:EnvironmentNotStated 0.076 0.119 -0.16 0.316
b_SexF:EnvironmentStressed 0.09 0.067 -0.039 0.223
b_SexM:EnvironmentStressed -0.132 0.068 -0.264 0.002
sd_Outcome__Intercept 0.327 0.074 0.214 0.499 *
sd_Study.ID__Intercept 0.485 0.053 0.393 0.6 *
sd_Taxon__Intercept 0.134 0.121 0.005 0.439 *

From these models we can see that the moderators Blinding and Generations have little effect on effect size, and they are also tangential to our research question (unlike e.g. sex and environment).


Restricted analysis of just the higher-quality data

The models and plots above all use the full dataset (called full_dataset in the R code). However, some of the variables included in that dataset are not clearly related to population fitness (these were scored as “Ambiguous” in the “Outcome.Class” column), or it was unclear whether the environmental conditions could be termed “Stressful” or “Benign”. To check whether our findings are robust to the inclusion of the ambiguous results, and to properly evaluate the effects of environmental stress, we next restricted the dataset to exclude these unclear cases (called strict_dataset in the R code). We also focus on the model containing the fixed effects Sex, Environment, Taxon and the interaction between sex and environment, as these are key to our research question.

strict_dataset <- full_dataset %>%
  filter(Outcome.Class != "Ambiguous" & Environment != "Not Stated")  %>%
  mutate(Sex = relevel(Sex, ref = "M"),
         Environment = relevel(factor(Environment), ref = "Unstressed"),
         Taxon = relevel(factor(Taxon), ref = "Beetle"))

# strict_dataset <- full_dataset %>% 
#   filter(Outcome.Class == "Direct" & Environment != "Not Stated")  %>% 
#   mutate(Sex = relevel(Sex, ref = "M"),
#          Environment = relevel(factor(Environment), ref = "Unstressed"),
#          Taxon = relevel(factor(Taxon), ref = "Beetle"))

model.complete <- rma.mv(g, V = var.g, 
                         mods = ~ 1 + Sex * Environment + Taxon, 
                         random = list(~ 1 | Study.ID, 
                                       ~ 1 | Outcome), 
                         method = "REML", 
                         data = strict_dataset)

summary(model.complete, digits = 2)
## 
## Multivariate Meta-Analysis Model (k = 289; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -1316.74   2633.48   2659.48   2706.64   2660.86  
## 
## Variance Components: 
## 
##            estim  sqrt  nlvls  fixed    factor
## sigma^2.1   0.21  0.45     53     no  Study.ID
## sigma^2.2   0.13  0.36     13     no   Outcome
## 
## Test for Residual Heterogeneity: 
## QE(df = 278) = 4120.24, p-val < .01
## 
## Test of Moderators (coefficient(s) 2:11): 
## QM(df = 10) = 77.87, p-val < .01
## 
## Model Results:
## 
##                           estimate    se   zval  pval  ci.lb  ci.ub     
## intrcpt                       0.27  0.17   1.57  0.12  -0.07   0.60     
## SexB                          0.00  0.07   0.03  0.98  -0.14   0.15     
## SexF                          0.11  0.03   3.72  <.01   0.05   0.17  ***
## EnvironmentStressed          -0.16  0.04  -3.61  <.01  -0.24  -0.07  ***
## TaxonCricket                 -0.02  0.49  -0.05  0.96  -0.99   0.94     
## TaxonFly                     -0.12  0.16  -0.75  0.45  -0.44   0.20     
## TaxonGuppy                   -0.13  0.48  -0.27  0.79  -1.08   0.82     
## TaxonMite                     0.10  0.24   0.42  0.67  -0.37   0.57     
## TaxonMouse                   -0.31  0.28  -1.14  0.26  -0.86   0.23     
## SexB:EnvironmentStressed      0.18  0.09   2.00  0.05   0.00   0.35    *
## SexF:EnvironmentStressed      0.26  0.05   5.11  <.01   0.16   0.37  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result is a model with estimates for various taxa, species, sexes and environments. We again write a function to predict the average effect size for each sub-group in the data.

# function that makes predict.rma work like a normal predict() function, instead of the idiosyncratic way that it works by default.
get.predictions.complete <- function(newdata){
  B<-0; F<-0; Stressed<-0; Cricket<-0; Fly<-0; Guppy<-0; Mite<-0; Mouse<-0; interaction1<-0; interaction2<-0;
  if(newdata[1] == "B") B<-1 
  if(newdata[1] == "F") F<-1 
  if(newdata[2] == "Stressed") Stressed<-1
  if(newdata[2] == "Cricket") Cricket<-1
  if(newdata[3] == "Fly") Fly<-1
  if(newdata[3] == "Guppy") Guppy<-1
  if(newdata[3] == "Mite") Mite<-1
  if(newdata[3] == "Mouse") Mouse<-1
  if(newdata[1] == "B" & newdata[2] == "Stressed") interaction1<-1
  if(newdata[1] == "F" & newdata[2] == "Stressed") interaction2<-1

  predict(model.complete, newmods=c(B, F, Stressed, Cricket, Fly, Guppy, Mite, Mouse, interaction1, interaction2))
}
# Get the predictions for each combination of moderators
predictions.complete <- as.data.frame(expand.grid(Sex = c("M", "B", "F"),
                           Environment = c("Unstressed", "Stressed"),
                           Taxon = c("Beetle", "Cricket", "Fly", "Guppy", "Mite", "Mouse")))
predictions.complete <- cbind(predictions.complete, do.call("rbind", apply(predictions.complete, 1, get.predictions.complete))) %>%
  select(Sex, Environment, Taxon, pred, se, ci.lb, ci.ub) 
for(i in 4:7) predictions.complete[,i] <- unlist(predictions.complete[,i])

countpred <- count_(strict_dataset, c("Sex", "Environment", "Taxon"))
predictions.complete <- left_join(predictions.complete, countpred, by = c("Sex", "Environment", "Taxon"))
countpred <- count_(strict_dataset, c("Sex", "Environment", "Taxon"))
predictions.complete <- left_join(predictions.complete, countpred, by = c("Sex", "Environment", "Taxon"))

# plot the model predictions for effect size (Hedges' g) for male, female and both sexes under both stressed and unstressed condition and faceted for each taxon. 

pd <- position_dodgev(0.6)

Taxon.metaanlysis <- predictions.complete %>% 
    mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female"),
         Environment = replace(as.character(Environment), Environment == "Stressed", "Stressful"),
         Environment = replace(Environment, Environment == "Unstressed", "Benign"),
         Sex = factor(Sex, levels = c("Male", "Both", "Female"))) %>%
  ggplot(aes(x = pred, y= Environment, fill = Sex)) + 
  geom_vline(xintercept = 0, linetype = 2, colour = "black") + 
  geom_errorbarh(aes(xmin = predictions.complete$ci.lb, 
                     xmax = predictions.complete$ci.ub,
                     color= Sex), 
                 height = 0, position = pd, show.legend = F) +
  geom_point(position = pd, size=2, shape=21, color = "grey20") + 
  facet_grid(Taxon ~.)+
  ylab("Environment \n")+
  xlab("\nModel Prediction (Hedges g)")+
  xlim(-1, 2)+
  ggtitle('Effects of Sex and Stress on \nPopulation Fitness for Each Taxon')+
  scale_fill_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_color_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  guides(fill = guide_legend(reverse=T, override.aes = list(size = 4.5)))+
  
    theme_bw()+
  
  theme(strip.text.y = element_text(angle = 0, size = 14, margin = margin(r=20, l=20)), 
        strip.background = element_rect(colour = NULL,
                                        linetype = "blank",
                                        fill = "gray90"),
        text = element_text(size=14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=14), 
        legend.title=element_text(size=14, 
                                  face = "bold"),
        axis.title.x = element_text(hjust = 0.3, size = 14),
        axis.title.y = element_text(size = 14),
        plot.title = element_text(size = 14))

#ggsave(plot = Taxon.metaanlysis, filename = "PDF_RDS_files/SF2.pdf", height = 8, width = 8)
Taxon.metaanlysis

#saveRDS(Taxon.metaanlysis, "PDF_RDS_files/SF2.rds")


Supplementary Figure 2: The predictions from this model indicate some heterogeneity between taxon. However, the most apparent difference between taxa is that confidence bands increase for taxa with low sample size. As previously shown, the beetle and fly taxa are the most heavily sampled and in the above figure have the narrowest confidence bands. Importantly, the overall direction of effect does not change between taxon, although guppies and mice show near zero effect sizes. Here we see that under stressed environments, females from all taxa appear to have greater fitness increase than males or ‘both’.

Supplementary Table 10: The predictions for the above figure looking at the effect of sexual selection amongst taxa uses the following dataframe.

colnames(predictions.complete) <- c("Sex", "Environment", "Taxon", "Prediction", "SE", "CI.lb", "CI.ub", "n")
predictions.complete <- format(predictions.complete, digits = 2)
predictions.complete[[9]] <- NULL
predictions.complete %>% pander()
Sex Environment Taxon Prediction SE CI.lb CI.ub n
M Unstressed Beetle 0.2680 0.17 -0.066 0.60 18
B Unstressed Beetle 0.2702 0.18 -0.081 0.62 2
F Unstressed Beetle 0.3810 0.17 0.047 0.71 15
M Stressed Beetle 0.1128 0.17 -0.228 0.45 2
B Stressed Beetle 0.2934 0.19 -0.072 0.66 6
F Stressed Beetle 0.4905 0.17 0.153 0.83 9
M Unstressed Cricket 0.2680 0.17 -0.066 0.60 1
B Unstressed Cricket 0.2702 0.18 -0.081 0.62 NA
F Unstressed Cricket 0.3810 0.17 0.047 0.71 NA
M Stressed Cricket 0.1128 0.17 -0.228 0.45 NA
B Stressed Cricket 0.2934 0.19 -0.072 0.66 NA
F Stressed Cricket 0.4905 0.17 0.153 0.83 NA
M Unstressed Fly 0.1453 0.14 -0.128 0.42 60
B Unstressed Fly 0.1475 0.15 -0.142 0.44 9
F Unstressed Fly 0.2583 0.14 -0.017 0.53 93
M Stressed Fly -0.0099 0.14 -0.290 0.27 9
B Stressed Fly 0.1707 0.16 -0.138 0.48 8
F Stressed Fly 0.3678 0.14 0.090 0.65 19
M Unstressed Guppy 0.1374 0.48 -0.796 1.07 NA
B Unstressed Guppy 0.1395 0.48 -0.806 1.08 NA
F Unstressed Guppy 0.2503 0.48 -0.682 1.18 3
M Stressed Guppy -0.0178 0.48 -0.953 0.92 NA
B Stressed Guppy 0.1627 0.48 -0.786 1.11 NA
F Stressed Guppy 0.3599 0.48 -0.575 1.30 NA
M Unstressed Mite 0.3690 0.23 -0.075 0.81 3
B Unstressed Mite 0.3711 0.23 -0.085 0.83 2
F Unstressed Mite 0.4820 0.23 0.037 0.93 9
M Stressed Mite 0.2138 0.23 -0.235 0.66 1
B Stressed Mite 0.3943 0.23 -0.064 0.85 4
F Stressed Mite 0.5915 0.23 0.143 1.04 3
M Unstressed Mouse -0.0463 0.26 -0.564 0.47 1
B Unstressed Mouse -0.0442 0.27 -0.574 0.49 2
F Unstressed Mouse 0.0666 0.26 -0.452 0.58 5
M Stressed Mouse -0.2016 0.27 -0.723 0.32 NA
B Stressed Mouse -0.0210 0.27 -0.558 0.52 NA
F Stressed Mouse 0.1761 0.27 -0.344 0.70 5
#saveRDS(predictions.complete, "PDF_RDS_files/ST10.rds")

Given that none of the levels of Taxon have a particularly strong impact on effect size, and many categories are incompletely sampled with regards to Sex and Environment (Supplementary Table 10), we elected to treat Taxon as a random/group level effect in all subsequent models.


REML: Effects of Environment and Sex

Here we ask two key questions: Does sexual selection benefit populations in stressful environments more than benign environments? AND Do the benefits of sexual selection differ between the sexes? The only difference to the previous model is that Taxon is now treated as a random effect. Note that this analysis again uses the strict dataset, containing only “direct” fitness measures and those where we were able to score the presence/absence of environmental stress.

model.complete2 <- rma.mv(g, V = var.g, 
                          mods = ~ 1 + Sex * Environment, 
                          random = list(~ 1 | Study.ID, 
                                        ~ 1 | Outcome,
                                        ~ 1 | Taxon), 
                          method = "REML", 
                          data = strict_dataset)
saveRDS(model.complete2, 'data/model.complete2.rds')
summary(model.complete2, digits = 2)
## 
## Multivariate Meta-Analysis Model (k = 289; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -1321.34   2642.68   2660.68   2693.49   2661.34  
## 
## Variance Components: 
## 
##            estim  sqrt  nlvls  fixed    factor
## sigma^2.1   0.19  0.44     53     no  Study.ID
## sigma^2.2   0.13  0.36     13     no   Outcome
## sigma^2.3   0.00  0.00      6     no     Taxon
## 
## Test for Residual Heterogeneity: 
## QE(df = 283) = 4226.68, p-val < .01
## 
## Test of Moderators (coefficient(s) 2:6): 
## QM(df = 5) = 75.51, p-val < .01
## 
## Model Results:
## 
##                           estimate    se   zval  pval  ci.lb  ci.ub     
## intrcpt                       0.19  0.12   1.53  0.13  -0.05   0.43     
## SexB                          0.00  0.07   0.04  0.97  -0.14   0.15     
## SexF                          0.11  0.03   3.73  <.01   0.05   0.17  ***
## EnvironmentStressed          -0.16  0.04  -3.63  <.01  -0.24  -0.07  ***
## SexB:EnvironmentStressed      0.18  0.09   2.07  0.04   0.01   0.36    *
## SexF:EnvironmentStressed      0.26  0.05   5.11  <.01   0.16   0.37  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Next, we conducted planned contrasts on model.complete2 to investigate the difference in effect size between groups, using the anova method from metafor.

Supplementary Table 11: Using the anova.rma function we can conduct hypothesis tests between two categorical groups in the model. Here we conduct 5 tests comparing the relative effect of sexual selection between the sexes, and in different environments.

#anova where you specify the values based on the list of moderators
anova.1 = anova(model.complete2, L=c(0, 0, -1, 0, 0, 0)) 
anova.2 = anova(model.complete2, L=c(0, 0, -1, 0, 0, -1))
anova.3 = anova(model.complete2, L=c(0, 0, 0, -1, 0, -1))
anova.4 = anova(model.complete2, L=c(0, 0, 0, -1, 0, 0))
anova.5 = anova(model.complete2, L=c(0, 0, 0, -1, -1, 0))

anova.list <- list(anova.1, anova.2, anova.3, anova.4, anova.5)

anova.frame <- t(data.frame(lapply(anova.list, function(x) {
  data.frame(x[["hyp"]],
  x[["Lb"]],
  x[["se"]],
  x[["Lb"]] - 1.96*x[["se"]],
  x[["Lb"]] + 1.96*x[["se"]],
  x[["pval"]])
})))
anova.frame <- as.data.frame(split(anova.frame, rep(1:6)))
colnames(anova.frame) <- c("Hypothesis", "Estimate", "Est.Error", "CI.Lower", "CI.Upper", "pval")
anova.frame$Estimate <- as.numeric(levels(anova.frame$Estimate))[anova.frame$Estimate]
anova.frame$Est.Error <- as.numeric(levels(anova.frame$Est.Error))[anova.frame$Est.Error]
anova.frame$CI.Lower <- as.numeric(levels(anova.frame$CI.Lower))[anova.frame$CI.Lower]
anova.frame$CI.Upper <- as.numeric(levels(anova.frame$CI.Upper))[anova.frame$CI.Upper]
anova.frame$pval <- as.numeric(levels(anova.frame$pval))[anova.frame$pval]
anova.frame <- format(anova.frame, digits = 2)
anova.frame$star <- c("", "*", "*", "*", "")
colnames(anova.frame)[colnames(anova.frame)=="star"] <- " "
anova.frame$pval <- NULL
rownames(anova.frame) <- c("M vs F, Benign", "M vs F, Stressful", "Benign vs Stressful, Female", "Benign vs Stressful, Male", "Benign vs Stressful, Both")
anova.frame %>% pander(split.table = Inf)
  Hypothesis Estimate Est.Error CI.Lower CI.Upper
M vs F, Benign -SexF = 0 -0.113 0.030 -0.173 -0.054
M vs F, Stressful -SexF - SexF:EnvironmentStressed = 0 -0.377 0.046 -0.468 -0.287 *
Benign vs Stressful, Female -EnvironmentStressed - SexF:EnvironmentStressed = 0 -0.108 0.037 -0.181 -0.036 *
Benign vs Stressful, Male -EnvironmentStressed = 0 0.156 0.043 0.072 0.240 *
Benign vs Stressful, Both -EnvironmentStressed - SexB:EnvironmentStressed = 0 -0.028 0.080 -0.184 0.128
#saveRDS(anova.frame, "PDF_RDS_files/ST11.rds")



Bayesian model: Effects of Environment and Sex

if(!file.exists("data/brms.complete2.rds")){
  brms.complete2 <- brm(g | se(SE)  ~ 1 + Sex * Environment 
                        + (1|Taxon) 
                        + (1|Study.ID) 
                        + (1|Outcome), 
                        family = "gaussian", 
                        seed = 1,
                        cores = 4, chains = 4, iter = 4000, 
                        control = list(adapt_delta = 0.999, max_treedepth = 15),
                        data = strict_dataset %>% mutate(SE = sqrt(var.g)))
  saveRDS(brms.complete2, file = "data/brms.complete2.rds")
}
brms.complete2 <- readRDS(file = "data/brms.complete2.rds") 


Supplementary Table 12: Model estimate summary table for the Bayesian model investigating the effect of environment and sex (alongside sexual selection) on fitness.

# lternatively you can obtain posterior samples manually.
post <- (posterior_samples(brms.complete2, 
                           pars = c("b_Intercept", "b_SexB", "b_SexF", 
                                    "b_EnvironmentStressed", "b_SexB:EnvironmentStressed", 
                                    "b_SexF:EnvironmentStressed")) %>%
           mutate(both_benign = b_Intercept + b_SexB,
                  both_stressful = b_Intercept + b_SexB + b_EnvironmentStressed + `b_SexB:EnvironmentStressed`,
                  male_benign = b_Intercept,
                  male_stressful = b_Intercept + b_EnvironmentStressed,
                  female_benign = b_Intercept + b_SexF,
                  female_stressful = b_Intercept + b_SexF + b_EnvironmentStressed + `b_SexF:EnvironmentStressed`))[,-(1:6)]

# Add columns for Environment and Sex
post <- as.data.frame(t(post))
post$Sex <- c("Both", "Both", "Male", "Male", "Female", "Female")
post$Environment <- c("Benign", "Stressful", "Benign", "Stressful", "Benign", "Stressful")

#Clean up dataframe
post <- melt(post, id = c("Sex", "Environment"))
post$variable <- NULL

make_text_summary(brms.complete2) %>% add_significance_stars() %>% tibble::rownames_to_column("Model Parameter") %>% pander()
Model Parameter Estimate Est.Error Q2.5 Q97.5
b_Intercept 0.188 0.175 -0.167 0.522
b_SexB 0.003 0.073 -0.143 0.144
b_SexF 0.113 0.03 0.053 0.171 *
b_EnvironmentStressed -0.156 0.043 -0.241 -0.073 *
b_SexB:EnvironmentStressed 0.182 0.089 0.006 0.354 *
b_SexF:EnvironmentStressed 0.264 0.052 0.163 0.369 *
sd_Outcome__Intercept 0.413 0.119 0.241 0.703 *
sd_Study.ID__Intercept 0.452 0.053 0.36 0.57 *
sd_Taxon__Intercept 0.147 0.152 0.004 0.545 *


Supplementary Table 13: Hypothesis tests for the Bayesian model are similar to the REML model, with slight differences to CIs.

#Obtain hypothesis estimates
brms.hypothesis <- hypothesis(brms.complete2, c("0 = SexF",
                             "0 = SexF + SexF:EnvironmentStressed",
                             "0 = SexF:EnvironmentStressed + EnvironmentStressed",
                             "0 = EnvironmentStressed",
                             "0 = SexB:EnvironmentStressed + EnvironmentStressed"))
#Format into dataframe
brms.hypothesis.table <- 
  data.frame(brms.hypothesis[["hypothesis"]][["Hypothesis"]],
             brms.hypothesis[["hypothesis"]][["Estimate"]],
             brms.hypothesis[["hypothesis"]][["Est.Error"]],
             brms.hypothesis[["hypothesis"]][["CI.Lower"]],
             brms.hypothesis[["hypothesis"]][["CI.Upper"]],
             brms.hypothesis[["hypothesis"]][["Star"]])
colnames(brms.hypothesis.table) <- c("Hypothesis", "Estimate", "Est.Error", "CI.Lower", "CI.Upper", " ")
brms.hypothesis.table <- format(brms.hypothesis.table, digits = 2)
rownames(brms.hypothesis.table) <- c("M vs F, Benign", "M vs F, Stressful", "Benign vs Stressful, Female", "Benign vs Stressful, Male", "Benign vs Stressful, Both")
brms.hypothesis.table %>% pander(split.table = Inf)
  Hypothesis Estimate Est.Error CI.Lower CI.Upper
M vs F, Benign (0)-(SexF) = 0 -0.113 0.030 -0.171 -0.053 *
M vs F, Stressful (0)-(SexF+SexF:EnvironmentStressed) = 0 -0.377 0.047 -0.471 -0.286 *
Benign vs Stressful, Female (0)-(SexF:EnvironmentStressed+EnvironmentStressed) = 0 -0.109 0.037 -0.182 -0.035 *
Benign vs Stressful, Male (0)-(EnvironmentStressed) = 0 0.156 0.043 0.073 0.241 *
Benign vs Stressful, Both (0)-(SexB:EnvironmentStressed+EnvironmentStressed) = 0 -0.026 0.080 -0.182 0.133


Using predictions from both REML and Bayesian models we can obtain a figure that plots the mean/median predictions as well as distribution density (Bayesian) and 95 % CI (REML).

#Generate predictions without taxon utilising the previously described function
get.predictions.complete2 <- function(newdata){
  B<-0; F<-0; Stressed<-0; interaction1<-0; interaction2<-0; interaction3<-0
  if(newdata[1] == "B") B<-1 
  if(newdata[1] == "F") F<-1 
  if(newdata[2] == "Stressed") Stressed<-1
  if(newdata[1] == "B" & newdata[2] == "Stressed") interaction1<-1
  if(newdata[1] == "F" & newdata[2] == "Stressed") interaction2<-1

  predict(model.complete2, newmods=c(B, F, Stressed, interaction1=interaction1, interaction2=interaction2))
}

# Get the predictions for each combination of moderators
predictions.complete2 <- as.data.frame(expand.grid(Sex = c("M", "B", "F"),
                           Environment = c("Unstressed", "Stressed")))
predictions.complete2 <- cbind(predictions.complete2, do.call("rbind", apply(predictions.complete2, 1, get.predictions.complete2))) %>%
  select(Sex, Environment, pred, se, ci.lb, ci.ub) 
for(i in 3:6) predictions.complete2[,i] <- unlist(predictions.complete2[,i])

countpred <- count_(strict_dataset, c("Sex", "Environment"))

predictions.complete2 <- left_join(predictions.complete2, countpred, by = c("Sex", "Environment"))
colnames(predictions.complete2) <- c("Sex", "Environment", "Prediction", "SE", "CI.lb", "CI.ub", "n")
predictions.complete2 <- predictions.complete2 %>%
      mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female"),
         Environment = replace(as.character(Environment), Environment == "Stressed", "Stressful"),
         Environment = replace(Environment, Environment == "Unstressed", "Benign"),
         Sex = factor(Sex, levels = c("Male", "Both", "Female")))

#Plot the posterior values from the Bayesian model as density ridges
pd <- position_dodgev(height = 0.3)
posterior.plot <- post %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))) %>% ggplot()+
  stat_density_ridges(aes(x=value, y = Environment, fill = Sex), alpha = 0.65, scale = 0.6, position = position_nudge(y = 0.15), height = 10, show.legend = F, quantile_lines = T, quantiles = 2)+
  geom_vline(xintercept = 0, linetype = 2, colour = "black") + 
  ylab("Environment")+
  xlab("\nEffect Size (Hedges' g)")+
  # scale_fill_manual(values = c("Male" = "#e41a1c", "Female" = "#377eb8", "Both" = "#4daf4a"))+
  # scale_color_manual(values = c("Male" = "#e41a1c", "Female" = "#377eb8", "Both" = "#4daf4a"))+
  scale_fill_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_color_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_x_continuous(limits = c(-0.75, 1.5), breaks = c(-1, -.5, 0, 0.5, 1, 1.5))+
  
  theme_bw()+
  
  theme(panel.spacing = unit(0.1, "lines"),
        text = element_text(size=16),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=16), 
        legend.title=element_text(size=16, face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14),
        axis.title.y = element_text(size = 16, hjust = 0.35, margin = margin(r=-10)),
        axis.text.y = element_text(angle = 0),
        plot.title = element_text(size = 16))

#Add the REML predictions as circles with error bars
both.plots <- posterior.plot + 
  geom_errorbarh(data = predictions.complete2 %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
                 aes(xmin = predictions.complete2$CI.lb,
                     xmax = predictions.complete2$CI.ub, y = Environment,
                     color = Sex), 
                 height = 0, show.legend = F, position = pd)+
  
  geom_point(data = predictions.complete2 %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
             aes(x = Prediction, y = Environment, size=n, fill = Sex), 
             shape=21, color = "grey20", position = pd) +
  
    guides(fill = guide_legend(reverse=T, override.aes = list(size = 7.5)))+
    scale_size(guide = 'none')+
  
  scale_y_discrete(expand=c(0.075, 0))

both.plots


Figure 2a: Sexual selection generally increases population fitness, especially for females under stressful conditions. The benefits of sexual selection on fitness for females under stressful conditions are small-medium according to Cohen’s interperetation of effect sizes. Circle size is proportional to sample size (shown below). The REML predictions are shown as circles with error bars and the Bayesian predictions as density ridges. This figure can also be found in the main manuscript.

Supplementary Table 14: The REML predictions in the plot above use the following dataframe

predictions.complete2 <- format(predictions.complete2, digits = 2)
predictions.complete2$Prediction = as.numeric(predictions.complete2$Prediction)
predictions.complete2$CI.lb = as.numeric(predictions.complete2$CI.lb)
predictions.complete2$CI.ub = as.numeric(predictions.complete2$CI.ub)
predictions.complete2$n = as.numeric(predictions.complete2$n)

predictions.complete2 %>% pander()
Sex Environment Prediction SE CI.lb CI.ub n
Male Benign 0.188 0.12 -0.053 0.43 83
Both Benign 0.191 0.13 -0.071 0.45 15
Female Benign 0.301 0.12 0.058 0.54 125
Male Stressful 0.032 0.13 -0.218 0.28 12
Both Stressful 0.219 0.14 -0.061 0.5 18
Female Stressful 0.409 0.13 0.162 0.66 36
#saveRDS(predictions.complete2, "PDF_RDS_files/ST14.rds")

Effects of environment and sex on direct fitness components

model.direct.only <- rma.mv(g, V = var.g, 
                          mods = ~ 1 + Sex * Environment, 
                          random = list(~ 1 | Study.ID, 
                                       ~ 1 | Outcome,
                                       ~ 1 | Taxon), 
                          method = "REML", 
                          data = strict_dataset %>% filter(Outcome.Class == "Direct"))

#Generate predictions without taxon utilising the previously described function
get.predictions.direct <- function(newdata){
  B<-0; F<-0; Stressed<-0; interaction1<-0; interaction2<-0; interaction3<-0
  if(newdata[1] == "B") B<-1 
  if(newdata[1] == "F") F<-1 
  if(newdata[2] == "Stressed") Stressed<-1
  if(newdata[1] == "B" & newdata[2] == "Stressed") interaction1<-1
  if(newdata[1] == "F" & newdata[2] == "Stressed") interaction2<-1

  predict(model.direct.only, newmods=c(B, F, Stressed, interaction1=interaction1, interaction2=interaction2))
}

# Get the predictions for each combination of moderators
predictions.direct <- as.data.frame(expand.grid(Sex = c("M", "B", "F"),
                           Environment = c("Unstressed", "Stressed")))
predictions.direct <- cbind(predictions.direct, do.call("rbind", apply(predictions.direct, 1, get.predictions.direct))) %>%
  select(Sex, Environment, pred, se, ci.lb, ci.ub) 
for(i in 3:6) predictions.direct[,i] <- unlist(predictions.direct[,i])

countpred <- count_(strict_dataset %>% filter(Outcome.Class == "Direct"), c("Sex", "Environment"))

predictions.direct <- left_join(predictions.direct, countpred, by = c("Sex", "Environment"))
colnames(predictions.direct) <- c("Sex", "Environment", "Prediction", "SE", "CI.lb", "CI.ub", "n")
predictions.direct <- predictions.direct %>%
      mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female"),
         Environment = replace(as.character(Environment), Environment == "Stressed", "Stressful"),
         Environment = replace(Environment, Environment == "Unstressed", "Benign"),
         Sex = factor(Sex, levels = c("Male", "Both", "Female")))

predictions.direct <- format(predictions.direct, digits = 2)
predictions.direct$Prediction = as.numeric(predictions.direct$Prediction)
predictions.direct$CI.lb = as.numeric(predictions.direct$CI.lb)
predictions.direct$CI.ub = as.numeric(predictions.direct$CI.ub)
predictions.direct$n = as.numeric(predictions.direct$n)



if(!file.exists("data/brms.direct.rds")){
  brms.direct <- brm(g | se(SE)  ~ 1 + Sex * Environment 
                        + (1|Taxon) 
                        + (1|Study.ID) 
                        + (1|Outcome), 
                        family = "gaussian", 
                        seed = 1,
                        cores = 4, chains = 4, iter = 4000, 
                        control = list(adapt_delta = 0.9999, max_treedepth = 15),
                        data = strict_dataset %>% 
                          filter(Outcome.Class == "Direct") %>% 
                          mutate(SE = sqrt(var.g)))
  saveRDS(brms.direct, file = "data/brms.direct.rds")
}
brms.direct <- readRDS(file = "data/brms.direct.rds")

# lternatively you can obtain posterior samples manually.
post.direct <- (posterior_samples(brms.direct, 
                           pars = c("b_Intercept", "b_SexB", "b_SexF", 
                                    "b_EnvironmentStressed", "b_SexB:EnvironmentStressed", 
                                    "b_SexF:EnvironmentStressed")) %>%
           mutate(both_benign = b_Intercept + b_SexB,
                  both_stressful = b_Intercept + b_SexB + b_EnvironmentStressed + `b_SexB:EnvironmentStressed`,
                  male_benign = b_Intercept,
                  male_stressful = b_Intercept + b_EnvironmentStressed,
                  female_benign = b_Intercept + b_SexF,
                  female_stressful = b_Intercept + b_SexF + b_EnvironmentStressed + `b_SexF:EnvironmentStressed`))[,-(1:6)]

# Add columns for Environment and Sex
post.direct <- as.data.frame(t(post.direct))
post.direct$Sex <- c("Both", "Both", "Male", "Male", "Female", "Female")
post.direct$Environment <- c("Benign", "Stressful", "Benign", "Stressful", "Benign", "Stressful")

#Clean up dataframe
post.direct <- melt(post.direct, id = c("Sex", "Environment"))
post.direct$variable <- NULL

#Plot the posterior values from the Bayesian model as density ridges
pd <- position_dodgev(height = 0.3)
posterior.direct.plot <- post.direct %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))) %>% ggplot()+
  stat_density_ridges(aes(x=value, y = Environment, fill = Sex), alpha = 0.65, scale = 0.6, position = position_nudge(y = 0.15), height = 10, show.legend = F, quantile_lines = T, quantiles = 2)+
  geom_vline(xintercept = 0, linetype = 2, colour = "black") + 
  ylab("Environment\n")+
  xlab("\nEffect Size (Hedges' g)")+
  # scale_fill_manual(values = c("Male" = "#e41a1c", "Female" = "#377eb8", "Both" = "#4daf4a"))+
  # scale_color_manual(values = c("Male" = "#e41a1c", "Female" = "#377eb8", "Both" = "#4daf4a"))+
  scale_fill_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_color_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_x_continuous(limits = c(-1.25, 1.25), breaks = c(-1, -.5, 0, 0.5, 1))+
  
  theme_bw()+
  
  theme(panel.spacing = unit(0.1, "lines"),
        text = element_text(size=16),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=16), 
        legend.title=element_text(size=16, face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14),
        axis.title.y = element_text(size = 16, hjust = 0.35, margin = margin(r=-10)),
        axis.text.y = element_text(angle = 0),
        plot.title = element_text(size = 16))

#Add the REML predictions as circles with error bars
both.direct.plots <- posterior.direct.plot + 
  geom_errorbarh(data = predictions.direct %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
                 aes(xmin = predictions.direct$CI.lb,
                     xmax = predictions.direct$CI.ub, y = Environment,
                     color = Sex), 
                 height = 0, show.legend = F, position = pd)+
  
  geom_point(data = predictions.direct %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
             aes(x = Prediction, y = Environment, size=n, fill = Sex), 
             shape=21, color = "grey20", position = pd) +
  
    guides(fill = guide_legend(reverse=T, override.aes = list(size = 7.5)))+
    scale_size(guide = 'none')+
  
  scale_y_discrete(expand=c(0.075, 0))

#pdf("PDF_RDS_files/SF3.pdf", width = 10, height = 6)
grid.arrange(both.plots + 
               guides(fill = FALSE)+
               ggtitle("Indirect And Direct\n")+ theme(plot.title = element_text(size = 18, face = "bold", colour = "Red")),
             both.direct.plots + ggtitle("Direct Only\n")+
               theme(axis.title.y = element_blank(), 
                     plot.title = element_text(size = 18, face = "bold", colour = "Red")), 
             nrow = 1, 
             widths = c(3,3.5))

#dev.off

Supplementary Figure 3: The comparison of model predictions between models that use a dataset compiled from direct and indirect fitness components against a model that only uses direct fitness components. Notably, in both cases there is a significant positive effect of sexual selection on fitness for females evolving in stressful conditions. Bayesian predictions are depicted by a density curve while REML predictions are depicted with a circle (size corresponds to n) and 95 % CIs.

Supplementary Table 15: The REML predictions for the ‘direct model’ in the plot above use the following dataframe.

predictions.direct %>% pander()
Sex Environment Prediction SE CI.lb CI.ub n
Male Benign 0.131 0.12 -0.098 0.36 13
Both Benign 0.104 0.12 -0.137 0.34 15
Female Benign 0.091 0.11 -0.121 0.3 86
Male Stressful -0.45 0.13 -0.707 -0.19 2
Both Stressful 0.135 0.12 -0.108 0.38 12
Female Stressful 0.312 0.11 0.093 0.53 31
#saveRDS(predictions.direct, "PDF_RDS_files/ST15.rds")

Estimating Hedges’ g heterogeneity using I2

Using a function from https://github.com/daniel1noble/metaAidR we can obtain confidence intervals for total I2 and the individual components of the random effects. There are different methods to obtain estimates of I2. Here we obtain an overall value of I2 that is weighted based on variance and where estimates of heterogeneity are sourced from sigma2 of the respective models. The values are based on the REML models.

I2.model.g <- rma.mv(g, V = var.g, 
                          mods = ~ 1 + Sex * Environment, 
                          random = list(~ 1 | Observation.level, 
                                        ~ 1 | Study.ID, 
                                        ~ 1 | Outcome,
                                        ~ 1 | Taxon), 
                          method = "REML", 
                          data = strict_dataset %>% mutate(Observation.level = 1:n()))

I2(I2.model.g, strict_dataset$var.g) %>% pander(digits = 3)
  I2_Est. 2.5% CI 97.5% CI
Observation.level 57.4 48.7 66.2
Study.ID 36 26.5 45.4
Outcome 0.428 0.157 0.852
Taxon 1.39 0.223 3.51
total 95.2 94.4 95.9

These values indicate that 36 % of total heterogeneity is due to the between study. The total I2 is 95.2 %, a reasonably high I2 value. However this is relatively common in Ecology and Evolution total (Senior, Grueber, et al. 2016).


Meta-analysis using lnRR

As per reviewers comments, we can use the log-response ratio (lnRR) instead of Hedges’ g as the effect size (response variable in meta-analysis models). To calculate lnRR we use the metafor function escalc.

lnRR.data <- 
escalc(measure = "ROM",
       m1i = mean.high, 
       m2i = mean.low,
       sd1i = sd.high,
       sd2i = sd.low,
       n1i = n.high,
       n2i = n.low,
       vtype = "LS",
       data = full_dataset, var.names=c("lnRR","lnRR_var"), digits=4) %>% 
  filter(lnRR != "NA") %>% 
  mutate(lnRR = round(lnRR, 3)*Positive.Fitness,
         Sex = relevel(Sex, ref = "M"),
         Environment = relevel(Environment, ref = "Unstressed"),
         Taxon = relevel(Taxon, ref = "Beetle"),
         Outcome.Class = relevel(factor(Outcome.Class), ref = "Indirect"))

SMD.data <- 
  escalc(measure = "SMD",
         m1i = mean.high, 
         m2i = mean.low,
         sd1i = sd.high,
         sd2i = sd.low,
         n1i = n.high,
         n2i = n.low, 
         vtype = "UB",
         data = full_dataset, var.names=c("SMD","SMD_var"), digits=4) %>% 
  filter(SMD != "NA") %>% 
  mutate(SMD = round(SMD, 3)*Positive.Fitness,
         Sex = relevel(Sex, ref = "M"),
         Environment = relevel(Environment, ref = "Unstressed"),
         Taxon = relevel(Taxon, ref = "Beetle"),
         Outcome.Class = relevel(factor(Outcome.Class), ref = "Indirect"))

SMDH.data <- 
  escalc(measure = "SMDH",
         m1i = mean.high, 
         m2i = mean.low,
         sd1i = sd.high,
         sd2i = sd.low,
         n1i = n.high,
         n2i = n.low, 
         data = full_dataset, var.names=c("SMDH","SMDH_var"), digits=4) %>% 
  filter(SMDH != "NA") %>% 
  mutate(SMDH = round(SMDH, 3)*Positive.Fitness,
         Sex = relevel(Sex, ref = "M"),
         Environment = relevel(Environment, ref = "Unstressed"),
         Taxon = relevel(Taxon, ref = "Beetle"),
         Outcome.Class = relevel(factor(Outcome.Class), ref = "Indirect"))


lnRR.grandmean <- rma.mv(lnRR, lnRR_var,
                       mods = ~ 1,
                       random = list(~ 1 | Study.ID,
                                      ~ 1 | Outcome,
                                      ~ 1 | Taxon),
                       method = "REML",
                       data = lnRR.data)



SMD.grandmean <- rma.mv(SMD, SMD_var,
                       mods = ~ 1,
                       random = list(~ 1 | Study.ID,
                                      ~ 1 | Outcome,
                                      ~ 1 | Taxon),
                       method = "REML",
                       data = SMD.data)



SMDH.grandmean <- rma.mv(SMDH, SMDH_var,
                       mods = ~ 1,
                       random = list(~ 1 | Study.ID,
                                      ~ 1 | Outcome,
                                      ~ 1 | Taxon),
                       method = "REML",
                       data = SMDH.data)




if(!file.exists("data/lnRR.brms.env.sex.rds")){
  lnRR.brms.env.sex <- brm(lnRR | se(SE)  ~ 1 + Sex * Environment 
                        + (1|Taxon) 
                        + (1|Study.ID) 
                        + (1|Outcome), 
                        family = "gaussian", 
                        seed = 1,
                        cores = 4, chains = 4, iter = 4000, 
                        control = list(adapt_delta = 0.999, max_treedepth = 15),
                        data = lnRR.data %>% mutate(SE = sqrt(lnRR_var)) %>% 
                          filter(Outcome.Class != "Ambiguous" & Environment != "Not Stated"))
  saveRDS(lnRR.brms.env.sex, file = "data/lnRR.brms.env.sex.rds")
}
lnRR.brms.env.sex <- readRDS(file = "data/lnRR.brms.env.sex.rds") 

# lternatively you can obtain posterior samples manually.
lnRR.post <- (posterior_samples(lnRR.brms.env.sex, 
                           pars = c("b_Intercept", "b_SexB", "b_SexF", 
                                    "b_EnvironmentStressed", "b_SexB:EnvironmentStressed", 
                                    "b_SexF:EnvironmentStressed")) %>%
           mutate(both_benign = b_Intercept + b_SexB,
                  both_stressful = b_Intercept + b_SexB + b_EnvironmentStressed + `b_SexB:EnvironmentStressed`,
                  male_benign = b_Intercept,
                  male_stressful = b_Intercept + b_EnvironmentStressed,
                  female_benign = b_Intercept + b_SexF,
                  female_stressful = b_Intercept + b_SexF + b_EnvironmentStressed + `b_SexF:EnvironmentStressed`))[,-(1:6)]

# Add columns for Environment and Sex
lnRR.post <- as.data.frame(t(lnRR.post))
lnRR.post$Sex <- c("Both", "Both", "Male", "Male", "Female", "Female")
lnRR.post$Environment <- c("Benign", "Stressful", "Benign", "Stressful", "Benign", "Stressful")

#Clean up dataframe
lnRR.post <- melt(lnRR.post, id = c("Sex", "Environment"))
lnRR.post$variable <- NULL

lnRR.env.sex.model <- rma.mv(lnRR, V = lnRR_var, 
                          mods = ~ 1 + Sex * Environment, 
                          random = list(~ 1 | Study.ID, 
                                       ~ 1 | Outcome,
                                       ~ 1 | Taxon), 
                          method = "REML", 
                          data = lnRR.data %>% filter(Outcome.Class != "Ambiguous" & Environment != "Not Stated"))

#Generate predictions without taxon utilising the previously described function
get.predictions.lnRR <- function(newdata){
  B<-0; F<-0; Stressed<-0; interaction1<-0; interaction2<-0; interaction3<-0
  if(newdata[1] == "B") B<-1 
  if(newdata[1] == "F") F<-1 
  if(newdata[2] == "Stressed") Stressed<-1
  if(newdata[1] == "B" & newdata[2] == "Stressed") interaction1<-1
  if(newdata[1] == "F" & newdata[2] == "Stressed") interaction2<-1

  predict(lnRR.env.sex.model, newmods=c(B, F, Stressed, interaction1=interaction1, interaction2=interaction2))
}

# Get the predictions for each combination of moderators
predictions.lnRR <- as.data.frame(expand.grid(Sex = c("M", "B", "F"),
                           Environment = c("Unstressed", "Stressed")))
predictions.lnRR <- cbind(predictions.lnRR, do.call("rbind", apply(predictions.lnRR, 1, get.predictions.lnRR))) %>%
  select(Sex, Environment, pred, se, ci.lb, ci.ub) 
for(i in 3:6) predictions.lnRR[,i] <- unlist(predictions.lnRR[,i])

countpred <- count_(lnRR.data %>% filter(Outcome.Class != "Ambiguous" & Environment != "Not Stated"), c("Sex", "Environment"))

predictions.lnRR <- left_join(predictions.lnRR, countpred, by = c("Sex", "Environment"))
colnames(predictions.lnRR) <- c("Sex", "Environment", "Prediction", "SE", "CI.lb", "CI.ub", "n")
predictions.lnRR <- predictions.lnRR %>%
      mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female"),
         Environment = replace(as.character(Environment), Environment == "Stressed", "Stressful"),
         Environment = replace(Environment, Environment == "Unstressed", "Benign"),
         Sex = factor(Sex, levels = c("Male", "Both", "Female")))

predictions.lnRR <- format(predictions.lnRR, digits = 2)
predictions.lnRR$Prediction = as.numeric(predictions.lnRR$Prediction)
predictions.lnRR$CI.lb = as.numeric(predictions.lnRR$CI.lb)
predictions.lnRR$CI.ub = as.numeric(predictions.lnRR$CI.ub)
predictions.lnRR$n = as.numeric(predictions.lnRR$n)

#Plot the posterior values from the Bayesian model as density ridges
pd <- position_dodgev(height = 0.3)
posterior.lnRR.plot <- lnRR.post %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))) %>% ggplot()+
  stat_density_ridges(aes(x=value, y = Environment, fill = Sex), alpha = 0.65, scale = 0.6, position = position_nudge(y = 0.15), height = 10, show.legend = F, quantile_lines = T, quantiles = 2)+
  geom_vline(xintercept = 0, linetype = 2, colour = "black") + 
  ylab("Environment")+
  xlab("\nEffect Size (lnRR)")+
  # scale_fill_manual(values = c("Male" = "#e41a1c", "Female" = "#377eb8", "Both" = "#4daf4a"))+
  # scale_color_manual(values = c("Male" = "#e41a1c", "Female" = "#377eb8", "Both" = "#4daf4a"))+
  scale_fill_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_color_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_x_continuous(limits = c(-0.5, 1), breaks = c(-1, -.5, 0, 0.5, 1, 1.5))+
  
  theme_bw()+
  
  theme(panel.spacing = unit(0.1, "lines"),
        text = element_text(size=16),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=16), 
        legend.title=element_text(size=16, face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14),
        axis.title.y = element_text(size = 16, hjust = 0.35, margin = margin(r=-10)),
        axis.text.y = element_text(angle = 0),
        plot.title = element_text(size = 16))

#Add the REML predictions as circles with error bars
lnRR.plots <- posterior.lnRR.plot + 
  geom_errorbarh(data = predictions.lnRR %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
                 aes(xmin = predictions.lnRR$CI.lb,
                     xmax = predictions.lnRR$CI.ub, y = Environment,
                     color = Sex), 
                 height = 0, show.legend = F, position = pd)+
  
  geom_point(data = predictions.lnRR %>% mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
             aes(x = Prediction, y = Environment, size=n, fill = Sex), 
             shape=21, color = "grey20", position = pd) +
  
    guides(fill = guide_legend(reverse=T, override.aes = list(size = 7.5)))+
    scale_size(guide = 'none')+
  
  scale_y_discrete(expand=c(0.075, 0))

#pdf("PDF_RDS_files/SF4.pdf", width = 6, height = 6)
lnRR.plots

#dev.off()

Supplementary Figure 4: Using an alternative effect size (lnRR) sexual selection also increases population fitness. Circle size is proportional to sample size (shown below). The REML predictions are shown as circles with error bars and the Bayesian predictions as density ridges. Note that the magnitude of the effect sizes presented here should not be directly compared with those using Hedges’ g as lnRR is a log-transformed value.

Supplementary Table 16: The REML predictions for the meta-analysis using lnRR (plotted above) are formulated from the following model and predictions.

summary(lnRR.env.sex.model)
## 
## Multivariate Meta-Analysis Model (k = 236; method: REML)
## 
##     logLik    Deviance         AIC         BIC        AICc  
## -1247.9877   2495.9754   2513.9754   2544.9181   2514.7936  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed    factor
## sigma^2.1  0.0117  0.1081     43     no  Study.ID
## sigma^2.2  0.0160  0.1264     11     no   Outcome
## sigma^2.3  0.0057  0.0754      6     no     Taxon
## 
## Test for Residual Heterogeneity: 
## QE(df = 230) = 4484.8873, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2:6): 
## QM(df = 5) = 46.6937, p-val < .0001
## 
## Model Results:
## 
##                           estimate      se     zval    pval    ci.lb
## intrcpt                     0.1162  0.0593   1.9611  0.0499   0.0001
## SexB                        0.0937  0.0261   3.5915  0.0003   0.0426
## SexF                        0.0185  0.0158   1.1721  0.2412  -0.0125
## EnvironmentStressed         0.0125  0.0184   0.6828  0.4947  -0.0235
## SexB:EnvironmentStressed   -0.0604  0.0414  -1.4598  0.1444  -0.1415
## SexF:EnvironmentStressed    0.0705  0.0215   3.2785  0.0010   0.0283
##                            ci.ub     
## intrcpt                   0.2324    *
## SexB                      0.1448  ***
## SexF                      0.0495     
## EnvironmentStressed       0.0485     
## SexB:EnvironmentStressed  0.0207     
## SexF:EnvironmentStressed  0.1126   **
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predictions.lnRR %>% pander()
Sex Environment Prediction SE CI.lb CI.ub n
Male Benign 0.12 0.059 7e-05 0.23 73
Both Benign 0.21 0.063 0.08705 0.33 12
Female Benign 0.13 0.059 0.0193 0.25 110
Male Stressful 0.13 0.061 0.00907 0.25 8
Both Stressful 0.16 0.068 0.02938 0.29 6
Female Stressful 0.22 0.060 0.1002 0.34 27
#saveRDS(predictions.lnRR, "PDF_RDS_files/ST16.rds")

Meta-Analysis on Variance

Obtaining lnCVR and Meta-Analysis Models

This meta-analysis on variation utilises previously described and utilised methods devoleped (Nakagawa et al. 2015; Senior, Gosby, et al. 2016). Our goal is to determine whether the phenotypic variance in fitness related traits is impacted by sexual selection. We would assume that if selection is occuring not only would the trait mean shift in a certain direction but the variance associated with those changes to the mean would also decrease. In this case we use an effect size statistic known as the natural log of the coefficient of variation ratio (lnCVR).

# Firstly, we setup our calculation by creating a a restricted dataset with only unabmiguous fitness outcomes and running the functions developed by Nakagawa et al. 2015: 
Calc.lnCVR <- function(CMean, CSD, CN, EMean, ESD, EN){
    ES <- log(ESD) - log(EMean) + 1 / (2*(EN - 1)) - (log(CSD) - log(CMean) + 1 / (2*(CN - 1)))
    return(ES)
    
}

# Function to find the variance of lnCVR
# Equal.E.C.Corr = T assumes that the correlaiton between mean and sd (Taylor's Law) is equal for the mean and control groups
Calc.var.lnCVR <- function(CMean, CSD, CN, EMean, ESD, EN, Equal.E.C.Corr = TRUE){
    
    if(Equal.E.C.Corr==T){
    
        mvcorr <- cor.test(log(c(CMean, EMean)), log(c(CSD, ESD)))$estimate
    
        S2 <- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * mvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * mvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))
    
    }
    else{
        
        Cmvcorr<-cor.test(log(CMean), log(CSD))$estimate
        Emvcorr<-cor.test(log(EMean), (ESD))$estimate
    
        S2 <- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * Cmvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * Emvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))     
        
    }
    return(S2)
}


# Secondly, we utilise those formulas to obtain lnCVR and var.CVR for all applicable effect sizes. Noting that not all of the dataset has means, SD and n; some were calculated from summary statistics and are not able to have lnCVR calculated:

#Calculate lnCVr and var.lnCVr
strict_dataset$lnCVr     <- with(strict_dataset, Calc.lnCVR (mean.low, sd.low, n.low, mean.high, sd.high, n.high))
strict_dataset$var.lnCVr <- with(strict_dataset, Calc.var.lnCVR (mean.low, sd.low, n.low, mean.high, sd.high, n.high))

Meta-analysis of lnCVR using REML

variance.model <- rma.mv(lnCVr, V = var.lnCVr, mods = ~ 1 + Sex*Environment, 
                          random = list(~ 1 | Study.ID,
                                        ~ 1 | Taxon,
                                        ~ 1 | Outcome), 
                         method = "REML", data = strict_dataset)
summary(variance.model, digits = 2)
## 
## Multivariate Meta-Analysis Model (k = 236; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -3757.34   7514.69   7532.69   7563.63   7533.50  
## 
## Variance Components: 
## 
##            estim  sqrt  nlvls  fixed    factor
## sigma^2.1   0.07  0.26     43     no  Study.ID
## sigma^2.2   0.15  0.38      6     no     Taxon
## sigma^2.3   0.23  0.48     11     no   Outcome
## 
## Test for Residual Heterogeneity: 
## QE(df = 230) = 12270.31, p-val < .01
## 
## Test of Moderators (coefficient(s) 2:6): 
## QM(df = 5) = 2804.84, p-val < .01
## 
## Model Results:
## 
##                           estimate    se    zval  pval  ci.lb  ci.ub     
## intrcpt                       0.07  0.23    0.30  0.76  -0.38   0.51     
## SexB                         -0.26  0.04   -6.67  <.01  -0.33  -0.18  ***
## SexF                         -0.03  0.01   -2.13  0.03  -0.06  -0.00    *
## EnvironmentStressed           0.16  0.02    7.29  <.01   0.11   0.20  ***
## SexB:EnvironmentStressed     -0.73  0.04  -16.65  <.01  -0.82  -0.65  ***
## SexF:EnvironmentStressed     -0.98  0.03  -38.24  <.01  -1.03  -0.93  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Bayesian meta-analysis of lnCVR

Again, we use brms to obtain Bayesian model estimates. For this model the R2 is 0.34 (95% CIs = 0.32-0.36).

if(!file.exists("data/variance.brms.rds")){
  variance.brms <- brm(lnCVr| se(SE.v)  ~ 1 + Sex * Environment 
                + (1|Taxon) 
                + (1|Study.ID)
                + (1|Outcome),
                family = "gaussian", 
                seed = 1,
                cores = 4, chains = 4, iter = 4000, 
                control = list(adapt_delta = 0.999, max_treedepth = 15),
                data = strict_dataset %>% mutate(SE.v = sqrt(var.lnCVr)))
  saveRDS(variance.brms, "data/variance.brms.rds")
}
var.brms <- readRDS(file = "data/variance.brms.rds") #Avoid re-running model above

Supplementary Table 17: Model estimates, including random effect sigma value for the model of phenotypic variance (lnCVR)

post.variance <- (posterior_samples(var.brms, 
                           pars = c("b_Intercept", "b_SexB", "b_SexF", 
                                    "b_EnvironmentStressed", "b_SexB:EnvironmentStressed", 
                                    "b_SexF:EnvironmentStressed")) %>%
         mutate(both_benign = b_Intercept + b_SexB,
         both_stressful = b_Intercept + b_SexB + b_EnvironmentStressed + `b_SexB:EnvironmentStressed`,
         male_benign = b_Intercept,
         male_stressful = b_Intercept + b_EnvironmentStressed,
         female_benign = b_Intercept + b_SexF,
         female_stressful = b_Intercept + b_SexF + b_EnvironmentStressed + `b_SexF:EnvironmentStressed`))[,-(1:6)]

#Add columns for Environment and Sex
post.variance <- as.data.frame(t(post.variance))
post.variance$Sex <- c("Both", "Both", "Male", "Male", "Female", "Female")
post.variance$Environment <- c("Benign", "Stressful", "Benign", "Stressful", "Benign", "Stressful")

#Clean up dataframe
post.variance <- melt(post.variance, id = c("Sex", "Environment"))
post.variance$variable <- NULL


make_text_summary(var.brms) %>% 
  add_significance_stars() %>% tibble::rownames_to_column("Model Parameter") %>% pander()
Model Parameter Estimate Est.Error Q2.5 Q97.5
b_Intercept 0.067 0.304 -0.537 0.671
b_SexB -0.257 0.039 -0.333 -0.181 *
b_SexF -0.031 0.015 -0.06 -0.002 *
b_EnvironmentStressed 0.156 0.022 0.115 0.199 *
b_SexB:EnvironmentStressed -0.733 0.044 -0.82 -0.645 *
b_SexF:EnvironmentStressed -0.975 0.026 -1.027 -0.925 *
sd_Outcome__Intercept 0.557 0.16 0.342 0.963 *
sd_Study.ID__Intercept 0.267 0.038 0.203 0.352 *
sd_Taxon__Intercept 0.521 0.32 0.137 1.319 *


Predictions based on the REML and Bayesian model can then be generated in the same way as for Hedges’g. Here, negative values of lnCVR indicate a narrowing (decrease) in phenotypic variance as a result of sexual selection.

#Generate predictions
get.predictions.variance <- function(newdata){
  B<-0; F<-0; Stressed<-0; interaction1<-0; interaction2<-0; interaction3<-0
  if(newdata[1] == "B") B<-1 
  if(newdata[1] == "F") F<-1 
  if(newdata[2] == "Stressed") Stressed<-1
  if(newdata[1] == "B" & newdata[2] == "Stressed") interaction1<-1
  if(newdata[1] == "F" & newdata[2] == "Stressed") interaction2<-1

  predict(variance.model, newmods=c(B, F, Stressed, interaction1=interaction1, interaction2=interaction2))
}
# Get the predictions for each combination of moderators
predictions.variance <- as.data.frame(expand.grid(Sex = c("M", "B", "F"),
                           Environment = c("Unstressed", "Stressed")))
predictions.variance <- cbind(predictions.variance, do.call("rbind", apply(predictions.variance, 1, get.predictions.variance))) %>%
  select(Sex, Environment, pred, se, ci.lb, ci.ub) 
for(i in 3:6) predictions.variance[,i] <- unlist(predictions.variance[,i])

countpred <- count_(strict_dataset %>% filter(lnCVr != "NA" ), c("Sex", "Environment"))

predictions.variance <- left_join(predictions.variance, countpred, by = c("Sex", "Environment"))

#Change names to make them more clear
predictions.variance <- predictions.variance %>% 
      mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female")) %>%
  mutate(Environment = replace(as.character(Environment), Environment == "Stressed", "Stressful"),
         Environment = replace(Environment, Environment == "Unstressed", "Benign"))

colnames(predictions.variance) <- c("Sex", "Environment", "Prediction", "SE", "CI.lb", "CI.ub", "n")

#And plot the results, first for the posterior results of the brms model then for the metafor predictions
pd <- position_dodgev(height = 0.3)
var.plot.posterior <- post.variance %>% 
  mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))) %>% 
  ggplot() +
  stat_density_ridges(aes(x=value, y = Environment, fill = Sex), alpha = 0.65, scale = 0.6, position = position_nudge(y = 0.15), height = 10, show.legend = F, quantile_lines = T, quantiles = 2)+
  geom_vline(xintercept = 0, linetype = 2, colour = "black") + 
  ylab("Environment\n")+
  xlab("\nPhenotypic Variance (lnCVR)")+
  scale_x_continuous(limits = c(-2.1, 1.2), breaks = c(-2, -1.5, -1, -0.5, 0, 0.5, 1))+
  scale_fill_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_color_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  
  theme_bw()+
  
  theme(panel.spacing = unit(0.1, "lines"),
        text = element_text(size=16),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=16), 
        legend.title=element_text(size=16, face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14),
        axis.title.y = element_text(size = 16, hjust = 0.35, margin = margin(r=-10)),
        axis.text.y = element_text(angle = 0),
        plot.title = element_text(size = 16))

both.var.plots <- var.plot.posterior +
  geom_errorbarh(data = predictions.variance %>% 
                   mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
                 aes(xmin = predictions.variance$CI.lb, 
                     xmax = predictions.variance$CI.ub, y = Environment,
                     color = Sex), 
                 height = 0, position = pd, show.legend = F) +
  geom_point(data = predictions.variance %>% 
               mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
             aes(x = Prediction, y = Environment, size=n, fill = Sex), 
             shape=21, color = "grey20", position = pd) +
  guides(fill = guide_legend(reverse=T, override.aes = list(size = 7.5)))+
  scale_size(guide = 'none')+  
  scale_y_discrete(expand=c(0.075,0))

both.var.plots


Figure 2b: Phenotypic variation changes under sexual selection in stressful environments. For females under stressful conditions phenotypic variation decreases (narrows). While for males in stressful environments it increases. For outcomes that measured a mix of both males and females (pooled samples) in stressful environments phenotypic variation decreased slightly. The REML predictions are shown as circles with error bars and the Bayesian predictions as density ridges. Circle size is proportional to sample size.

Supplementary Table 18: The REML predictions in the plot above use the following dataframe.

predictions.variance <- format(predictions.variance, digits = 2)
predictions.variance %>% pander(digits = 2)
Sex Environment Prediction SE CI.lb CI.ub n
Male Benign 0.068 0.23 -0.38 0.51 73
Both Benign -0.187 0.23 -0.64 0.26 12
Female Benign 0.037 0.23 -0.41 0.48 110
Male Stressful 0.225 0.23 -0.22 0.67 8
Both Stressful -0.764 0.23 -1.22 -0.31 6
Female Stressful -0.781 0.23 -1.23 -0.34 27
#saveRDS(predictions.variance, "PDF_RDS_files/ST18.rds")

Hypothesis tests For models of lnCVR

As we did for Hedges’ \(g\), we here conduct hypothesis tests between categorical groups, to identify groups that differ significantly in how much sexual selection affects the phenotypic variance. Positive values indivate the first term in the hypothesis is larger (which would be male for rows 1-2 or benign for rows 3-5).

Supplementary Table 19: Bayesian hypothesis tests between categorical groups for phenotypic variation (lnCVR)

#Obtain hypothesis estimates
brms.hypothesis.var <- hypothesis(var.brms, c("0 = SexF",
                             "0 = SexF + SexF:EnvironmentStressed",
                             "0 = SexF:EnvironmentStressed + EnvironmentStressed",
                             "0 = EnvironmentStressed",
                             "0 = SexB:EnvironmentStressed + EnvironmentStressed"))
#Format into dataframe
brms.hypothesis.table.var <- 
  data.frame(brms.hypothesis.var[["hypothesis"]][["Hypothesis"]],
             brms.hypothesis.var[["hypothesis"]][["Estimate"]],
             brms.hypothesis.var[["hypothesis"]][["Est.Error"]],
             brms.hypothesis.var[["hypothesis"]][["CI.Lower"]],
             brms.hypothesis.var[["hypothesis"]][["CI.Upper"]],
             brms.hypothesis.var[["hypothesis"]][["Star"]])
colnames(brms.hypothesis.table.var) <- c("Hypothesis", "Estimate", "Est.Error", "CI.Lower", "CI.Upper", " ")
row.names(brms.hypothesis.table.var) <- c("M vs F, Benign", "M vs F, Stressful", "Benign vs Stressful, Female", "Benign vs Stressful, Male", "Benign vs Stressful, Both")
brms.hypothesis.table.var <- format(brms.hypothesis.table.var, digits = 2)
brms.hypothesis.table.var %>% pander(split.table = Inf)
  Hypothesis Estimate Est.Error CI.Lower CI.Upper
M vs F, Benign (0)-(SexF) = 0 0.031 0.015 0.0016 0.06 *
M vs F, Stressful (0)-(SexF+SexF:EnvironmentStressed) = 0 1.006 0.024 0.9600 1.05 *
Benign vs Stressful, Female (0)-(SexF:EnvironmentStressed+EnvironmentStressed) = 0 0.819 0.018 0.7828 0.85 *
Benign vs Stressful, Male (0)-(EnvironmentStressed) = 0 -0.156 0.022 -0.1990 -0.11 *
Benign vs Stressful, Both (0)-(SexB:EnvironmentStressed+EnvironmentStressed) = 0 0.577 0.040 0.4978 0.65 *

Supplementary Table 20: REML hypothesis tests between categorical groups for phenotypic variation (lnCVR)

#anova where you specify the values based on the list of moderators
anova.1 = anova(variance.model, L=c(0, 0, -1, 0, 0, 0)) 
anova.2 = anova(variance.model, L=c(0, 0, -1, 0, 0, -1))
anova.3 = anova(variance.model, L=c(0, 0, 0, -1, 0, -1))
anova.4 = anova(variance.model, L=c(0, 0, 0, -1, 0, 0))
anova.5 = anova(variance.model, L=c(0, 0, 0, -1, -1, 0))

anova.list.var <- list(anova.1, anova.2, anova.3, anova.4, anova.5)

anova.frame.var <- t(data.frame(lapply(anova.list.var, function(x) {
  data.frame(x[["hyp"]],
  x[["Lb"]],
  x[["se"]],
  x[["Lb"]] - 1.96*x[["se"]],
  x[["Lb"]] + 1.96*x[["se"]],
  x[["pval"]])
})))
anova.frame.var <- as.data.frame(split(anova.frame.var, rep(1:6)))
colnames(anova.frame.var) <- c("Hypothesis", "Estimate", "Est.Error", "CI.Lower", "CI.Upper", "pval")
anova.frame.var$Estimate <- as.numeric(levels(anova.frame.var$Estimate))[anova.frame.var$Estimate]
anova.frame.var$Est.Error <- as.numeric(levels(anova.frame.var$Est.Error))[anova.frame.var$Est.Error]
anova.frame.var$CI.Lower <- as.numeric(levels(anova.frame.var$CI.Lower))[anova.frame.var$CI.Lower]
anova.frame.var$CI.Upper <- as.numeric(levels(anova.frame.var$CI.Upper))[anova.frame.var$CI.Upper]
anova.frame.var$pval <- as.numeric(levels(anova.frame.var$pval))[anova.frame.var$pval]
anova.frame.var <- format(anova.frame.var, digits = 2)
anova.frame.var$star <- c("*", "*", "*", "*", "*")
colnames(anova.frame.var)[colnames(anova.frame.var)=="star"] <- " "
anova.frame.var$pval <- NULL
row.names(anova.frame.var) <- c("M vs F, Benign", "M vs F, Stressful", "Benign vs Stressful, Female", "Benign vs Stressful, Male", "Benign vs Stressful, Both")
anova.frame.var %>% pander(split.table = Inf)
  Hypothesis Estimate Est.Error CI.Lower CI.Upper
M vs F, Benign -SexF = 0 0.031 0.015 0.0025 0.06 *
M vs F, Stressful -SexF - SexF:EnvironmentStressed = 0 1.006 0.024 0.9598 1.05 *
Benign vs Stressful, Female -EnvironmentStressed - SexF:EnvironmentStressed = 0 0.818 0.018 0.7831 0.85 *
Benign vs Stressful, Male -EnvironmentStressed = 0 -0.157 0.022 -0.1990 -0.11 *
Benign vs Stressful, Both -EnvironmentStressed - SexB:EnvironmentStressed = 0 0.577 0.040 0.4995 0.65 *
#saveRDS(anova.frame.var, "PDF_RDS_files/ST20.rds")

Estimating lnCVR Heterogeneity Using I2

Similar to the meta-analysis on Hedges’ g we can obtain I2 for lnCVR REML model. In this case (compared to Hedges’ g) we see Taxon has more of a variable effect on overall I2 estimates and Study.ID has the variance component (\(\sigma^2\)) esgtimated at zero.

I2.model.lnCVr <- rma.mv(lnCVr, V = var.lnCVr, 
                          mods = ~ 1 + Sex * Environment, 
                          random = list(~ 1 | Study.ID,
                                        ~ 1 | Outcome,
                                        ~ 1 | Taxon,
                                        ~ 1 | Observation.level), 
                          method = "REML", 
                          data = strict_dataset %>% mutate(Observation.level = 1:n()))

I2(I2.model.lnCVr, na.omit(strict_dataset$var.lnCVr)) %>% pander(digits = 3)
  I2_Est. 2.5% CI 97.5% CI
Study.ID 0 0 0
Outcome 12.7 4.54 23.1
Taxon 7.68 1.29 18.4
Observation.level 78.6 65.9 89
total 98.9 98.7 99.1

Disclaimer: Noticeabley, the Study.ID \(I^2\) is estimated at zero with no CIs. This result is sourced from the variance component for Study.ID (\(\sigma_2\)) being estimated at zero with a standard error of zero. This result is questionable, thus we run the above model using brms and find the variance of the Study.ID group-level effect to be non-zero with confidence intervals including zero (see below). This is potential advantage of the Bayesian approach.

if(!file.exists("data/I2.variance.brms.rds")){

I2.variance.brms <- brm(lnCVr| se(SE.v)  ~ 1 + Sex * Environment 
                + (1|Taxon) 
                + (1|Study.ID)
                + (1|Outcome) 
                + (1|Observation.level),
                family = "gaussian", 
                seed = 1,
                cores = 4, chains = 4, iter = 4000, 
                control = list(adapt_delta = 0.999, max_treedepth = 15),
                data = strict_dataset %>% mutate(SE.v = sqrt(var.lnCVr)) %>% mutate(Observation.level = 1:n()))
  saveRDS(I2.variance.brms, "data/I2.variance.brms.rds")
  
}
I2.variance.brms <- readRDS(file = "data/I2.variance.brms.rds") #Avoid re-running model above

I2.variance.brms
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: lnCVr | se(SE.v) ~ 1 + Sex * Environment + (1 | Taxon) + (1 | Study.ID) + (1 | Outcome) + (1 | Observation.level) 
##    Data: strict_dataset %>% mutate(SE.v = sqrt(var.lnCVr))  (Number of observations: 236) 
## Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
##          total post-warmup samples = 8000
## 
## Group-Level Effects: 
## ~Observation.level (Number of levels: 236) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept)     0.46      0.03     0.42     0.51       1639 1.00
## 
## ~Outcome (Number of levels: 11) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept)     0.24      0.14     0.03     0.55       1120 1.00
## 
## ~Study.ID (Number of levels: 43) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept)     0.07      0.05     0.00     0.19        665 1.01
## 
## ~Taxon (Number of levels: 6) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept)     0.26      0.24     0.02     0.84       1523 1.00
## 
## Population-Level Effects: 
##                          Estimate Est.Error l-95% CI u-95% CI Eff.Sample
## Intercept                   -0.10      0.19    -0.49     0.28       2816
## SexB                         0.25      0.18    -0.10     0.60       1511
## SexF                         0.23      0.11     0.01     0.46       1346
## EnvironmentStressed          0.31      0.19    -0.06     0.68       1791
## SexB:EnvironmentStressed    -0.79      0.32    -1.41    -0.16       2105
## SexF:EnvironmentStressed    -0.58      0.22    -1.00    -0.15       1664
##                          Rhat
## Intercept                1.00
## SexB                     1.00
## SexF                     1.00
## EnvironmentStressed      1.00
## SexB:EnvironmentStressed 1.00
## SexF:EnvironmentStressed 1.00
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

lnVr Effect Size of Variance

In this meta-analysis we used the the log-coefficient of variaince ratio (lnCVR) as the response variable when investigating the impact of sexual selection on the variation in the distribution of traits associated with fitness. The lnCVR was used over the log-variance ration (lnVR) because lnVR does not account for the mean-variance relationship (Nakagawa et al. 2015; Senior, Gosby, et al. 2016) seen in this meta-analysis (see below). However, for completeness we present a similar style meta-analysis for lnVR to investigate the effects of environment

full_dataset %>% ggplot(aes(x = mean.high, y = sd.high))+
  geom_point()+
  scale_x_log10()+
  scale_y_log10()+
  xlab("Mean of Treatment Group")+
  ylab("Standard Deviation of Treatment Group") +
  geom_smooth(method = "lm", colour = "red")

Supplementary Figure 5: The use of lnCVR (as opposed to lnVR) is justified in this meta-analysis due to the strong mean-variance relationship. In this case the standard deviation from the treatment group is compared to the means of the treatment group on a log-scale.

lnVR.data <- 
escalc(measure = "VR",
       m1i = mean.high, 
       m2i = mean.low,
       sd1i = sd.high,
       sd2i = sd.low,
       n1i = n.high,
       n2i = n.low,
       vtype = "LS",
       data = full_dataset, var.names=c("lnVR","lnVR_var"), digits=4) %>% 
  filter(lnVR != "NA") %>% 
  mutate(lnVR = round(lnVR, 3),
         Sex = relevel(Sex, ref = "M"),
         Environment = relevel(Environment, ref = "Unstressed"),
         Taxon = relevel(Taxon, ref = "Beetle"),
         Outcome.Class = relevel(factor(Outcome.Class), ref = "Indirect"))

lnCVR.data <- 
escalc(measure = "CVR",
       m1i = mean.high, 
       m2i = mean.low,
       sd1i = sd.high,
       sd2i = sd.low,
       n1i = n.high,
       n2i = n.low,
       vtype = "LS",
       data = full_dataset, var.names=c("lnCVR","lnCVR_var"), digits=4) %>% 
  filter(lnCVR != "NA") %>% 
  mutate(lnCVR = round(lnCVR, 3),
         Sex = relevel(Sex, ref = "M"),
         Environment = relevel(Environment, ref = "Unstressed"),
         Taxon = relevel(Taxon, ref = "Beetle"),
         Outcome.Class = relevel(factor(Outcome.Class), ref = "Indirect"))


#MA on lnVR
lnVR.model <- rma.mv(lnVR, V = lnVR_var, mods = ~ 1 + Sex*Environment, 
                          random = list(~ 1 | Taxon,
                                        ~ 1 | Study.ID,
                                        ~ 1 | Outcome), 
                         method = "REML", data = lnVR.data %>% filter(Outcome.Class != "Ambiguous" & Environment != "Not Stated"))


#Generate predictions
get.predictions.lnVR <- function(newdata){
  B<-0; F<-0; Stressed<-0; interaction1<-0; interaction2<-0; interaction3<-0
  if(newdata[1] == "B") B<-1 
  if(newdata[1] == "F") F<-1 
  if(newdata[2] == "Stressed") Stressed<-1
  if(newdata[1] == "B" & newdata[2] == "Stressed") interaction1<-1
  if(newdata[1] == "F" & newdata[2] == "Stressed") interaction2<-1

  predict(lnVR.model, newmods=c(B, F, Stressed, interaction1=interaction1, interaction2=interaction2))
}
# Get the predictions for each combination of moderators
predictions.lnVR <- as.data.frame(expand.grid(Sex = c("M", "B", "F"),
                           Environment = c("Unstressed", "Stressed")))
predictions.lnVR <- cbind(predictions.lnVR, do.call("rbind", apply(predictions.lnVR, 1, get.predictions.lnVR))) %>%
  select(Sex, Environment, pred, se, ci.lb, ci.ub) 
for(i in 3:6) predictions.lnVR[,i] <- unlist(predictions.lnVR[,i])

countpred <- count_(lnVR.data, c("Sex", "Environment"))

predictions.lnVR <- left_join(predictions.lnVR, countpred, by = c("Sex", "Environment"))

#Change names to make them more clear
predictions.lnVR <- predictions.lnVR %>% 
      mutate(Sex = replace(as.character(Sex), Sex == "B", "Both"),
         Sex = replace(Sex, Sex == "M", "Male"),
         Sex = replace(Sex, Sex == "F", "Female")) %>%
  mutate(Environment = replace(as.character(Environment), Environment == "Stressed", "Stressful"),
         Environment = replace(Environment, Environment == "Unstressed", "Benign"))

colnames(predictions.lnVR) <- c("Sex", "Environment", "Prediction", "SE", "CI.lb", "CI.ub", "n")

if(!file.exists("data/lnVR.brms.rds")){
  lnVR.brms <- brm(lnVR| se(SE.lnVR)  ~ 1 + Sex * Environment 
                + (1|Taxon) 
                + (1|Study.ID)
                + (1|Outcome),
                family = "gaussian", 
                seed = 1,
                cores = 4, chains = 4, iter = 4000, 
                control = list(adapt_delta = 0.999, max_treedepth = 15),
                data =  lnVR.data %>% mutate(SE.lnVR = sqrt(lnVR_var)) %>% filter(Outcome.Class != "Ambiguous" & Environment != "Not Stated"))
  saveRDS(lnVR.brms, "data/lnVR.brms.rds")
}
lnVR.brms <- readRDS(file = "data/lnVR.brms.rds") #Avoid re-running model above
post.lnVR <- (posterior_samples(lnVR.brms, 
                           pars = c("b_Intercept", "b_SexB", "b_SexF", 
                                    "b_EnvironmentStressed", "b_SexB:EnvironmentStressed", 
                                    "b_SexF:EnvironmentStressed")) %>%
         mutate(both_benign = b_Intercept + b_SexB,
         both_stressful = b_Intercept + b_SexB + b_EnvironmentStressed + `b_SexB:EnvironmentStressed`,
         male_benign = b_Intercept,
         male_stressful = b_Intercept + b_EnvironmentStressed,
         female_benign = b_Intercept + b_SexF,
         female_stressful = b_Intercept + b_SexF + b_EnvironmentStressed + `b_SexF:EnvironmentStressed`))[,-(1:6)]

#Add columns for Environment and Sex
post.lnVR <- as.data.frame(t(post.lnVR))
post.lnVR$Sex <- c("Both", "Both", "Male", "Male", "Female", "Female")
post.lnVR$Environment <- c("Benign", "Stressful", "Benign", "Stressful", "Benign", "Stressful")

#Clean up dataframe
post.lnVR <- melt(post.lnVR, id = c("Sex", "Environment"))
post.lnVR$variable <- NULL

#And plot the results, first for the posterior results of the brms model then for the metafor predictions

lnVR.plot.posterior <- post.lnVR %>% 
  mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))) %>% 
  ggplot() +
  stat_density_ridges(aes(x=value, y = Environment, fill = Sex), alpha = 0.65, scale = 0.6, position = position_nudge(y = 0.15), height = 10, show.legend = F, quantile_lines = T, quantiles = 2)+
  geom_vline(xintercept = 0, linetype = 2, colour = "black") + 
  ylab("Environment\n")+
  xlab("\nPhenotypic Variance (lnVR)")+
  scale_x_continuous(limits = c(-1.6, 1.75), breaks = c(-2, -1.5, -1, -0.5, 0, 0.5, 1))+
  scale_fill_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  scale_color_manual(values = c("Male" = "#ff7f00", "Female" = "#984ea3", "Both" = "#4daf4a"))+
  
  theme_bw()+
  
  theme(panel.spacing = unit(0.1, "lines"),
        text = element_text(size=16),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.text = element_text(size=16), 
        legend.title=element_text(size=16, face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 14),
        axis.title.y = element_text(size = 16, hjust = 0.35, margin = margin(r=-10)),
        axis.text.y = element_text(angle = 0),
        plot.title = element_text(size = 16))

both.lnVR.plots <- lnVR.plot.posterior +
  geom_errorbarh(data = predictions.lnVR %>% 
                   mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
                 aes(xmin = predictions.lnVR$CI.lb, 
                     xmax = predictions.lnVR$CI.ub, y = Environment,
                     color = Sex), 
                 height = 0, position = pd, show.legend = F) +
  geom_point(data = predictions.lnVR %>% 
               mutate(Sex = factor(Sex, levels = c("Male", "Both", "Female"))), 
             aes(x = Prediction, y = Environment, size=n, fill = Sex), 
             shape=21, color = "grey20", position = pd) +
  guides(fill = guide_legend(reverse=T, override.aes = list(size = 7.5)))+
  scale_size(guide = 'none')+  
  scale_y_discrete(expand=c(0.075,0))

#pdf("PDF_RDS_files/SF6.pdf", width =6, height = 6)
both.lnVR.plots

#dev.off()

Supplementary Figure 6: The effects of sexual selection on the log-variance ratio (lnVR). Without accounting for the mean variance relationship (lnCVR) sexual selection has different effects on the variance measure.

Supplementary Table 21: The points in the above plot are based on the following REML model and predictions. While the predicted effects of sexual selection on lnVR in stressful conditions is non-significantly negative, there is still a negative significant interaction between stressful environments and the female sex.

summary(lnVR.model, digits = 2)
## 
## Multivariate Meta-Analysis Model (k = 236; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc  
## -2608.67   5217.34   5235.34   5266.28   5236.16  
## 
## Variance Components: 
## 
##            estim  sqrt  nlvls  fixed    factor
## sigma^2.1   0.04  0.20      6     no     Taxon
## sigma^2.2   0.10  0.31     43     no  Study.ID
## sigma^2.3   0.26  0.51     11     no   Outcome
## 
## Test for Residual Heterogeneity: 
## QE(df = 230) = 9664.58, p-val < .01
## 
## Test of Moderators (coefficient(s) 2:6): 
## QM(df = 5) = 1287.82, p-val < .01
## 
## Model Results:
## 
##                           estimate    se    zval  pval  ci.lb  ci.ub     
## intrcpt                       0.05  0.19    0.24  0.81  -0.33   0.42     
## SexB                         -0.19  0.06   -3.08  <.01  -0.31  -0.07   **
## SexF                          0.42  0.02   18.97  <.01   0.37   0.46  ***
## EnvironmentStressed           0.69  0.03   22.09  <.01   0.62   0.75  ***
## SexB:EnvironmentStressed     -1.04  0.07  -15.80  <.01  -1.17  -0.91  ***
## SexF:EnvironmentStressed     -1.33  0.04  -34.88  <.01  -1.40  -1.25  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
predictions.lnVR %>% pander(digits = 2) 
Sex Environment Prediction SE CI.lb CI.ub n
Male Benign 0.047 0.19 -0.33 0.42 132
Both Benign -0.14 0.2 -0.53 0.25 17
Female Benign 0.46 0.19 0.09 0.84 142
Male Stressful 0.73 0.19 0.35 1.1 19
Both Stressful -0.49 0.2 -0.89 -0.098 8
Female Stressful -0.18 0.19 -0.55 0.2 31
#saveRDS(predictions.lnVR, "PDF_RDS_files/ST21.rds")

Publication Bias

Funnel plots and Egger’s Test

Here we check for publication bias with a funnel plot. Note that the trim and fill or Eggers test method does not work with rma.mv objects. We can perform Eggers test using the regtest() function. This tests for asymmetry via assessing relationships between effect size and a specified predictor. Because the Eggers test does not work for rma.mv objects we remove the random effects and run with Sex * Environment as moderators.

standard.model <- rma(g, var.g, 
                      mods = ~ Sex * Environment, 
                      data = full_dataset)
regtest(standard.model)
## 
## Regression Test for Funnel Plot Asymmetry
## 
## model:     mixed-effects meta-regression model
## predictor: standard error
## 
## test for funnel plot asymmetry: z = 5.9109, p < .0001

We can use ggplot to create a nice funnel plot. The following code takes inspiration from John K. Sakaluk.

#Using residuals for the funnel plot means that we need to generate residuals (intercept only)
forest.model <- rma.mv(g, var.g,
                       mods = ~ 1,
                       random = list(~ 1 | Study.ID,
                                      ~ 1 | Outcome,
                                      ~ 1 | Taxon),
                       method = "REML",
                       data = full_dataset)

# Obtain residuals
resstandards <- rstandard.rma.mv(forest.model, type = "response")

# Obtain grand mean effect size 
grand.mean <- as.numeric(forest.model$b) 

# Create new df with residuals replacing raw
df.forest.model <- full_dataset
df.forest.model$g <- resstandards$resid + grand.mean 
df.forest.model$sei <- resstandards$se

# Funnel plot for all outcome classes

make.funnel <- function(dataset, model){
  
  apatheme <- theme_bw() +  
    theme(panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.border = element_blank(),
          axis.line = element_line(),
          text = element_text(family = 'Times'),
          legend.position = 'none')
  
  estimate <- model$b %>% as.numeric()
  SE <- model$se
  se.seq <- seq(0, max(sqrt(dataset$var.g)), 0.001)
  dfCI <- data.frame(ll95 = estimate - (1.96 * se.seq), 
                     ul95 = estimate + (1.96 * se.seq), 
                     ll99 = estimate - (3.29 * se.seq), 
                     ul99 = estimate + (3.29 * se.seq), 
                     se.seq = se.seq, 
                     meanll95 = estimate - (1.96 * SE), 
                     meanul95 = estimate + (1.96 * SE))
  
  ggplot(dataset, aes(x = sqrt(var.g), y = g)) +
    geom_point(size=1.5, shape = 21, color= "grey20") +
    xlab("Standard Error") + ylab("Effect Size (Hedges' g)") +
    geom_line(aes(x = se.seq, y = ll95), linetype = 'dotted', data = dfCI) + # confidence lines
    geom_line(aes(x = se.seq, y = ul95), linetype = 'dotted', data = dfCI) +
    geom_line(aes(x = se.seq, y = ll99), linetype = 'dashed', data = dfCI) +
    geom_line(aes(x = se.seq, y = ul99), linetype = 'dashed', data = dfCI) +
    geom_segment(aes(x = min(se.seq), y = meanll95, xend = max(se.seq), yend = meanll95), linetype='dotdash', data=dfCI, colour = "tomato", size =0.75) +
    geom_segment(aes(x = min(se.seq), y = meanul95, xend = max(se.seq), yend = meanul95), linetype='dotdash', data=dfCI, colour = "tomato",size=0.75) +
    scale_x_reverse() +
    coord_flip() +
    scale_fill_brewer(palette = "Set1")+

    theme_bw()+
  
    theme(panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        text = element_text(size=14),
        axis.line=element_line(),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.text = element_text(size=12),
        legend.title=element_text(size=12,
                                  face = "bold"),
        axis.title.x = element_text(hjust = 0.5, size = 12),
        axis.title.y = element_text(size = 12))

}

funnel.plot <- make.funnel(df.forest.model, forest.model)

#ggsave(plot = funnel.plot, filename = "figures/funnel_plot.eps", height = 7.5, width = 10)
funnel.plot


Figure 3a: A funnel plot of 459 effect sizes shows asymmetry, indicating potential publication bias, egger’s regression test for funnel plot asymmetry also suggests the plot is asymmetrical (z = 6.22, p < 0.0001). The asymmetry appears to come from a spread of positive effect sizes outside the funnel and of varying degrees of precision. Counter to expectations of publication bias these positive studies are not just ‘low precision, large effect’ results. Funnel plot asymmetry may also be due to genuine heterogeneity in effect sizes between studies, which is high in the present meta-analysis because it covers many species, outcome measurements, and experimental designs.

Journal Impact Factor

If we see a positive trend with effect size and Journal Impact Factor (JIF) it may represent publication bias whereby significant (positive) results are published more readily and in more circulated journals and non-confirmitory or negative results are not published or publiushed in lower impact journals. Our journal impact factor dataset is not evenly distributed as several publications in Nature (JIF ~ 40) are much larger than the next highest JIF (~11).

JIF.plot <- ggplot(data = full_dataset, aes(x=JIF, y=g, size = 1 / var.g))+
  geom_point(fill='darkgreen', shape = 21, colour = 'grey20', alpha = 0.75)+
  geom_hline(yintercept=0, linetype = 'dotted')+
  geom_smooth(method='lm', color='darkgreen', linetype="solid")+
  scale_x_log10(limits = c(-5, 40), breaks = c(0, 1, 2, 5, 10, 20, 40))+
  labs(size = 'Weight (%)', y="Effect size (Hedges' g)", x= 'Journal Impact Factor (log-scale)')+ 
  guides(size = F)+
  theme_bw()+
  theme(panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        text = element_text(size=14),
        axis.line=element_line(),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.text = element_text(size=12),
        legend.title=element_text(size=12,face = "bold"),
        axis.title.x = element_text(size = 12),
        axis.title.y = element_text(size = 12))

JIF.plot


Figure 3b: Journal impact factor is not correlated with effect size. Point size is proportional to the precision of the effect size.

Testing the effect of JIF on effect size with a simple linear model (slope = +0.1, p = 0.25):

JIFlm <- lm(g ~ log(JIF), data = full_dataset)
summary(JIFlm)
## 
## Call:
## lm(formula = g ~ log(JIF), data = full_dataset)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9062 -0.3472 -0.1088  0.2535  2.9273 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  0.02453    0.13646   0.180    0.857
## log(JIF)     0.11069    0.09272   1.194    0.233
## 
## Residual standard error: 0.6669 on 437 degrees of freedom
##   (20 observations deleted due to missingness)
## Multiple R-squared:  0.003251,   Adjusted R-squared:  0.0009696 
## F-statistic: 1.425 on 1 and 437 DF,  p-value: 0.2332

Time-lag Bias

We can also look at the time-lag bias, which suggests effect size decreases over time. Again, because one publication from 1980 is well before the next publication in the late 1990s we see a very uneven distribution of data points.

time.plot <- full_dataset %>% 
  ggplot(aes(x=Year, y=g, size = 1/(var.g)))+
  geom_jitter(fill='darkorange', alpha=.75, shape = 21, colour ='grey20')+
  geom_hline(yintercept=0, linetype = 'dotted')+
  guides(size = F)+
  geom_smooth(method='lm', color='darkorange')+
  labs(y="Effect size (Hedges' g)", x= 'Year')+
    theme_bw()+
    theme(panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(),
        text = element_text(size=14),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.text = element_text(size=12),
        legend.title=element_text(size=12,
                                  face = "bold"),
        axis.title.x = element_text(size = 12),
        axis.title.y = element_text(size = 12))

time.plot


Figure 3c: The effect size dataset shows little to no signs of the time-lag bias: the average effect size from published studies has remained consistent across the two previous decades. Point size is proportional to the precision of the effect size.

Again, a linear model for the regression line in the plot shows no effect (slope = -0.007, p = 0.3):

Yearlm <- lm(g ~ Year, data = full_dataset)
summary(Yearlm)
## 
## Call:
## lm(formula = g ~ Year, data = full_dataset)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9042 -0.3505 -0.1305  0.2938  2.9088 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.930289  12.628117   1.182    0.238
## Year        -0.007328   0.006283  -1.166    0.244
## 
## Residual standard error: 0.6857 on 457 degrees of freedom
## Multiple R-squared:  0.002968,   Adjusted R-squared:  0.0007866 
## F-statistic: 1.361 on 1 and 457 DF,  p-value: 0.2441

Other Moderators

Blinding

In addition to publication bias, other forms of bias may exist within studies. We initially collected data on whether studies were blind or not. Although not many studies (n=8) used blinding there was multiple effect sizes reported in these studies, thus we can visualise whether blinding affects the effect sizes from the model. Blinding was regarded as a redundant predictor in the model (estimate = 0.0287, p = 0.8974) and was dropped.

blind.plot <- df.forest.model %>% ggplot(aes(x=Blinding, y=g))+
  geom_jitter(aes(fill=Blinding, size = ((1/var.g)/27708.14)*100), shape=21, color='grey20')+ #total 1/var.g
  geom_boxplot(outlier.shape = NA, fill = NA)+
  geom_hline(yintercept=0, linetype = 'dotted') + 
  scale_fill_brewer(palette = "Set2")+
  labs(y="Effect size (Hedges' g)", x= 'Blinding', size = 'Weight (%)')+
  guides(fill=FALSE, size = guide_legend(override.aes = list(fill = "#66c2a5")))+
  theme_bw()+
  theme(panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(),
        text = element_text(size=14),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.text = element_text(size=12),
        legend.title=element_text(size=12, face = "bold"),
        axis.title.x = element_text(size = 12),
        axis.title.y = element_text(size = 12))

#ggsave(plot = blind.plot, filename = "PDF_RDS_files/blind_plot.pdf", height = 6, width = 8)
blind.plot


Supplementary Figure 7: Blinding does not appear to alter the magnitude or direction of effect sizes for the studies used in this meta-analysis. However, this should not be viewed as evidence against the validity of blinding as a research method.


Generations

We recorded the number of generations of experimental exolution each study used. The number of generations proved a negligible predictor in the meta-analytic models (estimate = 0.0019, p = 0.2341). The effect sizes are plotted against the generation at which the effect size was extracted.

generations.plot <- strict_dataset %>% ggplot(aes(x=Generations, y=g))+
  geom_jitter(shape=21, color = "grey20", size=2, aes(fill=Taxon))+
  ylim(-3.5,3.5)+
  geom_hline(yintercept=0, linetype="dashed") + 
  scale_fill_brewer(palette = "Set3")+
  geom_smooth(method = 'lm', color='black')+
  labs(y="Effect size (Hedges' g)", x= 'Generations', size= 'Weight (%)')+
  theme_bw()+
  theme(panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(),
        text = element_text(size=14),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.text = element_text(size=12),
        legend.title=element_text(size=12, face = "bold"),
        axis.title.x = element_text(size = 12),
        axis.title.y = element_text(size = 12))

#ggsave(plot = generations.plot, filename = "PDF_RDS_files/generations_plot.pdf", height = 7.5, width = 10)

generations.plot


Supplementary Figure 8: The number of generations an experimental evolution procedure is run for does not appear to affect the magnitude or direction of the effect size from the fitness related outcome measured at that point.

A linear model shows next to no effect of generations on effect size:

summary(lm(g ~ Generations, data = strict_dataset))
## 
## Call:
## lm(formula = g ~ Generations, data = strict_dataset)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8295 -0.3640 -0.1260  0.2705  2.6740 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.227210   0.068643   3.310  0.00105 **
## Generations -0.000250   0.001655  -0.151  0.88005   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.654 on 287 degrees of freedom
## Multiple R-squared:  7.949e-05,  Adjusted R-squared:  -0.003405 
## F-statistic: 0.02281 on 1 and 287 DF,  p-value: 0.88

Kawecki et al. (2012) reviewed the field of experimental evolution and noted that changes to variation may need longer generations to become apparent. The following graph looks at the relationship between number of generations and lnCVr:

generations.plot.var <- strict_dataset %>% ggplot(aes(x=Generations, y=lnCVr))+
  geom_jitter(shape=21, color = "grey20", size=2, aes(fill=Taxon))+
  ylim(-3.5,3.5)+
  geom_hline(yintercept=0, linetype="dashed") + 
  scale_fill_brewer(palette = "Set3")+
  geom_smooth(method = 'lm', color='black')+
  labs(y='Effect size (lnCVR)', x= 'Generations', size= 'Weight (%)')+
  theme_bw()+
  theme(panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        text = element_text(size=14),
        axis.line=element_line(),
        panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.text = element_text(size=12),
        legend.title=element_text(size=12,
                                  face = "bold"),
        axis.title.x = element_text(size = 12),
        axis.title.y = element_text(size = 12))

#ggsave(plot = generations.plot.var, filename = "PDF_RDS_files/generations_plot_var.pdf", height = 7.5, width = 10)
generations.plot.var


Supplementary Figure 9: Phenotypic variation (lnCVR) is not affected by the number of generations an experiment is ran for.

summary(lm(lnCVr ~ Generations, data = strict_dataset))
## 
## Call:
## lm(formula = lnCVr ~ Generations, data = strict_dataset)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.99065 -0.25090  0.00081  0.23828  1.85152 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.097351   0.065168  -1.494    0.137
## Generations  0.001239   0.001654   0.749    0.455
## 
## Residual standard error: 0.52 on 234 degrees of freedom
##   (53 observations deleted due to missingness)
## Multiple R-squared:  0.002391,   Adjusted R-squared:  -0.001872 
## F-statistic: 0.5608 on 1 and 234 DF,  p-value: 0.4547

R Session Information

This section shows the operating system and R packages attached during the production of this document

sessionInfo() %>% pander

R version 3.3.1 (2016-06-21)

**Platform:** x86_64-apple-darwin13.4.0 (64-bit)

locale: en_AU.UTF-8||en_AU.UTF-8||en_AU.UTF-8||C||en_AU.UTF-8||en_AU.UTF-8

attached base packages: grid, stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: bindrcpp(v.0.2.2), gridExtra(v.2.3), ggbeeswarm(v.0.6.0), cowplot(v.0.9.3), metaAidR(v.0.0.0.9000), brmstools(v.0.5.1), bayesplot(v.1.6.0), backports(v.1.1.2), brms(v.2.6.1), Rcpp(v.0.12.18), rstan(v.2.17.3), StanHeaders(v.2.17.2), ggridges(v.0.5.0), RColorBrewer(v.1.1-2), reshape2(v.1.4.3), ggrepel(v.0.8.0), kableExtra(v.1.0.1), ggthemes(v.4.0.1), ggplot2(v.3.1.0.9000), forestplot(v.1.7.2), checkmate(v.1.8.5), magrittr(v.1.5), car(v.3.0-2), carData(v.3.0-1), lme4(v.1.1-18-1), dplyr(v.0.7.6), plyr(v.1.8.4), metafor(v.2.0-0), Matrix(v.1.2-14), compute.es(v.0.2-4), tidyr(v.0.7.2), pander(v.0.6.2) and knitr(v.1.22.1)

loaded via a namespace (and not attached): minqa(v.1.2.4), colorspace(v.1.3-2), rio(v.0.5.10), rsconnect(v.0.8.8), rprojroot(v.1.3-2), markdown(v.0.8), base64enc(v.0.1-3), rstudioapi(v.0.7), DT(v.0.4), mvtnorm(v.1.0-6), xml2(v.1.2.0), codetools(v.0.2-14), bridgesampling(v.0.5-2), splines(v.3.3.1), shinythemes(v.1.1.1), nloptr(v.1.0.4), png(v.0.1-7), shiny(v.1.1.0), readr(v.1.1.1), httr(v.1.3.1), assertthat(v.0.2.0), lazyeval(v.0.2.1), later(v.0.7.3), htmltools(v.0.3.6), tools(v.3.3.1), igraph(v.1.1.2), coda(v.0.19-1), gtable(v.0.2.0), glue(v.1.3.0), cellranger(v.1.1.0), nlme(v.3.1-128), crosstalk(v.1.0.0), xfun(v.0.3), stringr(v.1.2.0), openxlsx(v.4.1.0), rvest(v.0.3.2), miniUI(v.0.1.1.1), mime(v.0.5), gtools(v.3.8.1), MASS(v.7.3-50), zoo(v.1.8-3), scales(v.1.0.0), colourpicker(v.1.0), hms(v.0.4.2), promises(v.1.0.1), Brobdingnag(v.1.2-6), parallel(v.3.3.1), inline(v.0.3.15), shinystan(v.2.4.0), yaml(v.2.2.0), curl(v.3.2), loo(v.2.0.0), stringi(v.1.1.6), highr(v.0.6), dygraphs(v.1.1.1.6), zip(v.1.0.0), rlang(v.0.2.2), pkgconfig(v.2.0.2), matrixStats(v.0.54.0), evaluate(v.0.10.1), lattice(v.0.20-33), purrr(v.0.2.4), bindr(v.0.1.1), labeling(v.0.3), rstantools(v.1.5.1), htmlwidgets(v.1.2), tidyselect(v.0.2.4), R6(v.2.2.2), haven(v.1.1.2), foreign(v.0.8-66), withr(v.2.1.2), xts(v.0.11-0), abind(v.1.4-5), tibble(v.1.3.4), rmarkdown(v.1.10), readxl(v.1.0.0), data.table(v.1.11.4), forcats(v.0.3.0), threejs(v.0.3.1), digest(v.0.6.16), webshot(v.0.5.0), xtable(v.1.8-2), httpuv(v.1.4.5), stats4(v.3.3.1), munsell(v.0.5.0), beeswarm(v.0.2.3), viridisLite(v.0.3.0), vipor(v.0.4.5) and shinyjs(v.1.0)


References

Aguirre, J. David, and Dustin J. Marshall. 2012. “Does Genetic Diversity Reduce Sibling Competition?” Journal Article. Evolution 66 (1): 94–102. doi:10.1111/j.1558-5646.2011.01413.x.

Ahuja, Abha, and Rama S. Singh. 2008. “Variation and Evolution of Male Sex Combs in Drosophila: Nature of Selection Response and Theories of Genetic Variation for Sexual Traits.” Journal Article. Genetics 179 (1): 503–9. doi:10.1534/genetics.107.08063.

Almbro, Maria, and Leigh W. Simmons. 2014. “Sexual Selection Can Remove an Experimentally Induced Mutation Load.” Journal Article. Evolution 68 (1): 295–300. doi:10.1111/evo.12238.

Amitin, E. G., and S. Pitnick. 2007. “Influence of Developmental Environment on Male- and Female-Mediated Sperm Precedence in Drosophila Melanogaster.” Journal Article. Journal of Evolutionary Biology 20 (1): 381–91. doi:10.1111/j.1420-9101.2006.01184.x.

Antolin, M. F., P. J. Ode, G. E. Heimpel, R. B. O’Hara, and M. R. Strand. 2003. “Population Structure, Mating System, and Sex-Determining Allele Diversity of the Parasitoid Wasp Habrobracon Hebetor.” Journal Article. Heredity 91 (4): 373–81. doi:10.1038/sj.hdy.6800337.

Arbuthnott, Devin, and Howard D. Rundle. 2012. “Sexual Selection Is Ineffectual or Inhibits the Purging of Deleterious Mutations in Drosophila Melanogaster.” Journal Article. Evolution 66 (7): 2127–37. doi:10.1111/j.1558-5646.2012.01584.x.

———. 2014. “Misalignment of Natural and Sexual Selection Among Divergently Adapted Drosophila Melanogaster Populations.” Journal Article. Animal Behaviour 87: 45–51. doi:10.1016/j.anbehav.2013.10.005.

Arbuthnott, Devin, Emily M. Dutton, Aneil F. Agrawal, and Howard D. Rundle. 2014. “The Ecology of Sexual Conflict: Ecologically Dependent Parallel Evolution of Male Harm and Female Resistance in Drosophila Melanogaster.” Journal Article. Ecology Letters 17 (2): 221–28. doi:10.1111/ele.12222.

Archer, C. Ruth, Eoin Duffy, David J. Hosken, Mikael Mokkonen, Kensuke Okada, Keiko Oku, Manmohan D. Sharma, and John Hunt. 2015. “Sex-Specific Effects of Natural and Sexual Selection on the Evolution of Life Span and Ageing in Drosophila Simulans.” Journal Article. Functional Ecology 29 (4): 562–69. doi:10.1111/1365-2435.12369.

Artieri, Carlo G., Wilfried Haerty, Bhagwati P. Gupta, and Rama S. Singh. 2008. “Sexual Selection and Maintenance of Sex: Evidence from Comparisons of Rates of Genomic Accumulation of Mutations and Divergence of Sex-Related Genes in Sexual and Hermaphroditic Species of Caenorhabditis.” Journal Article. Molecular Biology and Evolution 25 (5): 972–79. doi:10.1093/molbev/msn046.

Bacigalupe, L. D., H. S. Crudgington, F. Hunter, A. J. Moore, and R. R. Snook. 2007. “Sexual Conflict Does Not Drive Reproductive Isolation in Experimental Populations of Drosophila Pseudoobscura.” Journal Article. Journal of Evolutionary Biology 20 (5): 1763–71. doi:10.1111/j.1420-9101.2007.01389.x.

Bacigalupe, Leonardo D., Helen S. Crudgington, Jon Slate, Allen J. Moore, and Rhonda R. Snook. 2008. “Sexual Selection and Interacting Phenotypes in Experimental Evolution: A Study of Drosophila Pseudoobscura Mating Behavior.” Journal Article. Evolution 62 (7): 1804–12. doi:10.1111/j.1558-5646.2008.00402.x.

Barbosa, Miguel, Sean R. Connolly, Mizue Hisano, Maria Dornelas, and Anne E. Magurran. 2012. “Fitness Consequences of Female Multiple Mating: A Direct Test of Indirect Benefits.” Journal Article. Bmc Evolutionary Biology 12. doi:10.1186/1471-2148-12-185.

Bernasconi, G., and L. Keller. 2001. “Female Polyandry Affects Their Sons’ Reproductive Success in the Red Flour Beetle Tribolium Castaneum.” Journal Article. Journal of Evolutionary Biology 14 (1): 186–93. doi:10.1046/j.1420-9101.2001.00247.x.

Bielak, A. P., A. M. Skrzynecka, K. Miler, and J. Radwan. 2014. “Selection for Alternative Male Reproductive Tactics Alters Intralocus Sexual Conflict.” Journal Article. Evolution 68 (7): 2137–44. doi:10.1111/evo.12409.

Blows, M. W. 2002. “Interaction Between Natural and Sexual Selection During the Evolution of Mate Recognition.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 269 (1496): 1113–8. doi:10.1098/rspb.2002.2002.

Brommer, Jon E., Claudia Fricke, Dominic A. Edward, and Tracey Chapman. 2012. “Interactions Between Genotype and Sexual Conflict Environment Influence Transgenerational Fitness in Drosophila Melanogaster.” Journal Article. Evolution 66 (2): 517–31. doi:10.1111/j.1558-5646.2011.01449.x.

Castillo, Dean M., Melissa K. Burger, Curtis M. Lively, and Lynda F. Delph. 2015. “Experimental Evolution: Assortative Mating and Sexual Selection, Independent of Local Adaptation, Lead to Reproductive Isolation in the Nematode Caenorhabditis Remanei.” Journal Article. Evolution 69 (12): 3141–55. doi:10.1111/evo.12815.

Cayetano, Luis, Alexei A. Maklakov, Robert C. Brooks, and Russell Bonduriansky. 2011. “Evolution of Male and Female Genitalia Following Release from Sexual Selection.” Journal Article. Evolution 65 (8): 2171–83. doi:10.1111/j.1558-5646.2011.01309.x.

Chandler, Christopher H., Charles Ofria, and Ian Dworkin. 2013. “Runaway Sexual Selection Leads to Good Genes.” Journal Article. Evolution 67 (1): 110–19. doi:10.1111/j.1558-5646.2012.01750.x.

Chenoweth, S. F., D. Petfield, P. Doughty, and M. W. Blows. 2007. “Male Choice Generates Stabilizing Sexual Selection on a Female Fecundity Correlate.” Journal Article. Journal of Evolutionary Biology 20 (5): 1745–50. doi:10.1111/j.1420-9101.2007.01390.x.

Chenoweth, S. F., H. D. Rundle, and M. W. Blows. 2010. “Experimental Evidence for the Evolution of Indirect Genetic Effects: Changes in the Interaction Effect Coefficient, Psi, Due to Sexual Selection.” Journal Article. Evolution 64 (6): 1849–56. doi:10.1111/j.1558-5646.2010.00952.x.

Chenoweth, Stephen F., Nicholas C. Appleton, Scott L. Allen, and Howard D. Rundle. 2015. “Genomic Evidence That Sexual Selection Impedes Adaptation to a Novel Environment.” Journal Article. Current Biology 25 (14): 1860–6. doi:10.1016/j.cub.2015.05.034.

Chenoweth, Stephen F., Howard D. Rundle, and Mark W. Blows. 2008. “Genetic Constraints and the Evolution of Display Trait Sexual Dimorphism by Natural and Sexual Selection.” Journal Article. American Naturalist 171 (1): 22–34. doi:10.1086/523946.

Crudgington, H. S., A. P. Beckerman, L. Brüstle, K. Green, and R. R. Snook. 2005. “Experimental Removal and Elevation of Sexual Selection: Does Sexual Selection Generate Manipulative Males and Resistant Females?” Journal Article. American Naturalist 165 (SUPPL.): S72–S87. doi:10.1086/429353.

Crudgington, H. S., S. Fellows, and R. R. Snook. 2010. “Increased Opportunity for Sexual Conflict Promotes Harmful Males with Elevated Courtship Frequencies.” Journal Article. Journal of Evolutionary Biology 23 (2): 440–46. doi:10.1111/j.1420-9101.2009.01907.x.

Crudgington, Helen S., Sarah Fellows, Nichola S. Badcock, and Rhonda R. Snook. 2009. “Experimental Manipulation of Sexual Selection Promotes Greater Male Mating Capacity but Does Not Alter Sperm Investment.” Journal Article. Evolution 63 (4): 926–38. doi:10.1111/j.1558-5646.2008.00601.x.

Debelle, A., M. G. Ritchie, and R. R. Snook. 2016. “Sexual Selection and Assortative Mating: An Experimental Test.” Journal Article. Journal of Evolutionary Biology 29 (7): 1307–16. doi:10.1111/jeb.12855.

Demont, Marco, Vera M. Grazer, Lukasz Michalczyk, Anna L. Millard, Sonja H. Sbilordo, Brent C. Emerson, Matthew J. G. Gage, and Oliver Y. Martin. 2014. “Experimental Removal of Sexual Selection Reveals Adaptations to Polyandry in Both Sexes.” Journal Article. Evolutionary Biology 41 (1): 62–70. doi:10.1007/s11692-013-9246-3.

Edward, Dominic A., Claudia Fricke, and Tracey Chapman. 2010. “Adaptations to Sexual Selection and Sexual Conflict: Insights from Experimental Evolution and Artificial Selection.” Journal Article. Philosophical Transactions of the Royal Society B-Biological Sciences 365 (1552): 2541–8. doi:10.1098/rstb.2010.0027.

Fava, G. 1975. “Studies on the Selective Agents Operating in Experimental Populations of Tisbe Clodiensis (Copepoda, Harpacticoida).” Journal Article. Genetica 45 (3): 289–305. doi:10.1007/BF01508304.

Firman, R. C., and L. W. Simmons. 2012. “Male House Mice Evolving with Post-Copulatory Sexual Selection Sire Embryos with Increased Viability.” Journal Article. Ecology Letters 15 (1): 42–46. doi:10.1111/j.1461-0248.2011.01706.x.

Firman, R. C., L. Y. Cheam, and L. W. Simmons. 2011. “Sperm Competition Does Not Influence Sperm Hook Morphology in Selection Lines of House Mice.” Journal Article. Journal of Evolutionary Biology 24 (4): 856–62. doi:10.1111/j.1420-9101.2010.02219.x.

Firman, Renee C. 2011. “Polyandrous Females Benefit by Producing Sons That Achieve High Reproductive Success in a Competitive Environment.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 278 (1719): 2823–31. doi:10.1098/rspb.2010.2791.

———. 2014. “Female Social Preference for Males That Have Evolved via Monogamy: Evidence of a Trade-Off Between Pre- and Post-Copulatory Sexually Selected Traits?” Journal Article. Biology Letters 10 (10). doi:10.1098/rsbl.2014.0659.

Firman, Renee C., and Leigh W. Simmons. 2010. “Experimental Evolution of Sperm Quality via Postcopulatory Sexual Selection in House Mice.” Journal Article. Evolution 64 (5): 1245–56. doi:10.1111/j.1558-5646.2009.00894.x.

———. 2011. “Experimental Evolution of Sperm Competitiveness in a Mammal.” Journal Article. Bmc Evolutionary Biology 11. doi:10.1186/1471-2148-11-19.

Firman, Renee C., Francisco Garcia-Gonzalez, Evan Thyer, Samantha Wheeler, Zayaputeri Yamin, Michael Yuan, and Leigh W. Simmons. 2015. “Evolutionary Change in Testes Tissue Composition Among Experimental Populations of House Mice.” Journal Article. Evolution 69 (3): 848–55. doi:10.1111/evo.12603.

Firman, Renee C., Montserrat Gomendio, Eduardo R. S. Roldan, and Leigh W. Simmons. 2014. “The Coevolution of Ova Defensiveness with Sperm Competitiveness in House Mice.” Journal Article. American Naturalist 183 (4): 565–72. doi:10.1086/675395.

Fricke, C., C. Andersson, and G. Arnqvist. 2010. “Natural Selection Hampers Divergence of Reproductive Traits in a Seed Beetle.” Journal Article. Journal of Evolutionary Biology 23 (9): 1857–67. doi:10.1111/j.1420-9101.2010.02050.x.

Fricke, Claudia, and Goran Arnqvist. 2007. “Rapid Adaptation to a Novel Host in a Seed Beetle (Callosobruchus Maculatus): The Role of Sexual Selection.” Journal Article. Evolution 61 (2): 440–54. doi:10.1111/j.1558-5646.2007.00038.x.

Fritzsche, K., N. Timmermeyer, M. Wolter, and N. K. Michiels. 2014. “Female, but Not Male, Nematodes Evolve Under Experimental Sexual Coevolution.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 281 (1796). doi:10.1098/rspb.2014.0942.

Fritzsche, Karoline, Isobel Booksmythe, and Goran Arnqvist. 2016. “Sex Ratio Bias Leads to the Evolution of Sex Role Reversal in Honey Locust Beetles.” Journal Article. Current Biology 26 (18): 2522–6. doi:10.1016/j.cub.2016.07.018.

Garcia-Gonzalez, Francisco, Yukio Yasui, and Jonathan P. Evans. 2015. “Mating Portfolios: Bet-Hedging, Sexual Selection and Female Multiple Mating.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 282 (1798). doi:10.1098/rspb.2014.1525.

Gay, L., P. E. Eady, R. Vasudev, D. J. Hosken, and T. Tregenza. 2009. “Does Reproductive Isolation Evolve Faster in Larger Populations via Sexually Antagonistic Coevolution?” Journal Article. Biology Letters 5 (5): 693–96. doi:10.1098/rsbl.2009.0072.

Gay, L., D. J. Hosken, R. Vasudev, T. Tregenza, and P. E. Eady. 2009. “Sperm Competition and Maternal Effects Differentially Influence Testis and Sperm Size in Callosobruchus Maculatus.” Journal Article. Journal of Evolutionary Biology 22 (5): 1143–50. doi:10.1111/j.1420-9101.2009.01724.x.

Gay, Laurene, David J. Hosken, Paul Eady, Ram Vasudev, and Tom Tregenza. 2011. “The Evolution of Harm-Effect of Sexual Conflicts and Population Size.” Journal Article. Evolution 65 (3): 725–37. doi:10.1111/j.1558-5646.2010.01181.x.

Grazer, Vera M., Marco Demont, Lukasz Michalczyk, Matthew J. G. Gage, and Oliver Y. Martin. 2014. “Environmental Quality Alters Female Costs and Benefits of Evolving Under Enforced Monogamy.” Journal Article. Bmc Evolutionary Biology 14. doi:10.1186/1471-2148-14-21.

Grieshop, K., J. Stangberg, I. Martinossi-Allibert, G. Arnqvist, and D. Berger. 2016. “Strong Sexual Selection in Males Against a Mutation Load That Reduces Offspring Production in Seed Beetles.” Journal Article. Journal of Evolutionary Biology 29 (6): 1201–10. doi:10.1111/jeb.12862.

Hall, M. D., L. F. Bussiere, and R. Brooks. 2009. “Diet-Dependent Female Evolution Influences Male Lifespan in a Nuptial Feeding Insect.” Journal Article. Journal of Evolutionary Biology 22 (4): 873–81. doi:10.1111/j.1420-9101.2009.01687.x.

Hangartner, S., L. Michalczyk, M. J. G. Gage, and O. Y. Martin. 2015. “Experimental Removal of Sexual Selection Leads to Decreased Investment in an Immune Component in Female Tribolium Castaneum.” Journal Article. Infection, Genetics and Evolution 33: 212–18. doi:10.1016/j.meegid.2015.05.005.

Hangartner, S., S. H. Sbilordo, L Michalczyk, M. J. G. Gage, and O. Y. Martin. 2013. “Are There Genetic Trade-Offs Between Immune and Reproductive Investments in Tribolium Castaneum?” Journal Article. Infection, Genetics and Evolution 19: 45–50. doi:10.1016/j.meegid.2013.06.007.

Hicks, S. K., K. L. Hagenbuch, and L. M. Meffert. 2004. “Variable Costs of Mating, Longevity, and Starvation Resistance in Musca Domestica (Diptera: Muscidae).” Journal Article. Environmental Entomology 33 (3): 779–86. https://www.scopus.com/inward/record.uri?eid=2-s2.0-10644256548&partnerID=40&md5=1c7238ee84f7772d815135692978af9b.

Holland, B. 2002. “Sexual Selection Fails to Promote Adaptation to a New Environment.” Journal Article. Evolution 56 (4): 721–30. doi:10.1554/0014-3820(2002)056[0721:SSFTPA]2.0.CO;2.

Holland, B., and W. R. Rice. 1999. “Experimental Removal of Sexual Selection Reverses Intersexual Antagonistic Coevolution and Removes a Reproductive Load.” Journal Article. Proceedings of the National Academy of Sciences of the United States of America 96 (9): 5083–8. doi:10.1073/pnas.96.9.5083.

Hollis, B., and D. Houle. 2011. “Populations with Elevated Mutation Load Do Not Benefit from the Operation of Sexual Selection.” Journal Article. Journal of Evolutionary Biology 24 (9): 1918–26. doi:10.1111/j.1420-9101.2011.02323.x.

Hollis, B., D. Houle, and T. J. Kawecki. 2016. “Evolution of Reduced Post-Copulatory Molecular Interactions in Drosophila Populations Lacking Sperm Competition.” Journal Article. Journal of Evolutionary Biology 29 (1): 77–85. doi:10.1111/jeb.12763.

Hollis, Brian, and Tadeusz J. Kawecki. 2014. “Male Cognitive Performance Declines in the Absence of Sexual Selection.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 281 (1781). doi:10.1098/rspb.2013.2873.

Hollis, Brian, Janna L. Fierst, and David Houle. 2009. “Sexual Selection Accelerates the Elimination of a Deleterious Mutant in Drosophila Melanogaster.” Journal Article. Evolution 63 (2): 324–33. doi:10.1111/j.1558-5646.2008.00551.x.

Hollis, Brian, David Houle, Zheng Yan, Tadeusz J. Kawecki, and Laurent Keller. 2014. “Evolution Under Monogamy Feminizes Gene Expression in Drosophila Melanogaster.” Journal Article. Nature Communications 5. doi:10.1038/ncomms4482.

Hollis, Brian, Laurent Keller, and Tadeusz J. Kawecki. 2017. “Sexual Selection Shapes Development and Maturation Rates in Drosophila.” Journal Article. Evolution 71 (2): 304–14. doi:10.1111/evo.13115.

Hosken, D. J., O. Y. Martin, S. Wigby, T. Chapman, and D. J. Hodgson. 2009. “Sexual Conflict and Reproductive Isolation in Flies.” Journal Article. Biology Letters 5 (5): 697–99. doi:10.1098/rsbl.2009.0066.

House, Clarissa M., Zenobia Lewis, Dave J. Hodgson, Nina Wedell, Manmohan D. Sharma, John Hunt, and David J. Hosken. 2013. “Sexual and Natural Selection Both Influence Male Genital Evolution.” Journal Article. Plos One 8 (5). doi:10.1371/journal.pone.0063807.

Hunt, J., R. R. Snook, C. Mitchell, H. S. Crudgington, and A. J. Moore. 2012. “Sexual Selection and Experimental Evolution of Chemical Signals in Drosophila Pseudoobscura.” Journal Article. Journal of Evolutionary Biology 25 (11): 2232–41. doi:10.1111/j.1420-9101.2012.02603.x.

Immonen, Elina, Rhonda R. Snook, and Michael G. Ritchie. 2014. “Mating System Variation Drives Rapid Evolution of the Female Transcriptome in Drosophila Pseudoobscura.” Journal Article. Ecology and Evolution 4 (11): 2186–2201. doi:10.1002/ece3.1098.

Innocenti, Paolo, Ilona Flis, and Edward H. Morrow. 2014. “Female Responses to Experimental Removal of Sexual Selection Components in Drosophila Melanogaster.” Journal Article. Bmc Evolutionary Biology 14. doi:10.1186/s12862-014-0239-3.

Jacomb, Frances, Jason Marsh, and Luke Holman. 2016. “Sexual Selection Expedites the Evolution of Pesticide Resistance.” Journal Article. Evolution 70 (12): 2746–51. doi:10.1111/evo.13074.

Janicke, T., P. Sandner, S. A. Ramm, D. B. Vizoso, and L. Schaerer. 2016. “Experimentally Evolved and Phenotypically Plastic Responses to Enforced Monogamy in a Hermaphroditic Flatworm.” Journal Article. Journal of Evolutionary Biology 29 (9): 1713–27. doi:10.1111/jeb.12910.

Jarzebowska, Magdalena, and Jacek Radwan. 2010. “Sexual Selection Counteracts Extinction of Small Populations of the Bulb Mites.” Journal Article. Evolution 64 (5): 1283–9. doi:10.1111/j.1558-5646.2009.00905.x.

Kawecki, Tadeusz J., Richard E. Lenski, Dieter Ebert, Brian Hollis, Isabelle Olivieri, and Michael C. Whitlock. 2012. “Experimental Evolution.” Journal Article. Trends in Ecology & Evolution 27 (10): 547–60. doi:10.1016/j.tree.2012.06.001.

Klemme, I., and R. C. Firman. 2013. “Male House Mice That Have Evolved with Sperm Competition Have Increased Mating Duration and Paternity Success.” Journal Article. Animal Behaviour 85 (4): 751–58. doi:10.1016/j.anbehav.2013.01.016.

Lieshout, Emile van, Kathryn B. McNamara, and Leigh W. Simmons. 2014. “Rapid Loss of Behavioral Plasticity and Immunocompetence Under Intense Sexual Selection.” Journal Article. Evolution 68 (9): 2550–8. doi:10.1111/evo.12422.

Long, T. A. F., A. F. Agrawal, and L. Rowe. 2012. “The Effect of Sexual Selection on Offspring Fitness Depends on the Nature of Genetic Variation.” Journal Article. Current Biology 22 (3): 204–8. doi:10.1016/j.cub.2011.12.020.

Lumley, Alyson J., Lukasz Michalczyk, James J. N. Kitson, Lewis G. Spurgin, Catriona A. Morrison, Joanne L. Godwin, Matthew E. Dickinson, et al. 2015. “Sexual Selection Protects Against Extinction.” Journal Article. Nature 522 (7557): 470–+. doi:10.1038/nature14419.

MacLellan, K., L. Kwan, M. C. Whitlock, and H. D. Rundle. 2012. “Dietary Stress Does Not Strengthen Selection Against Single Deleterious Mutations in Drosophila Melanogaster.” Journal Article. Heredity 108 (3): 203–10. doi:10.1038/hdy.2011.60.

MacLellan, Kelsie, Michael C. Whitlock, and Howard D. Rundle. 2009. “Sexual Selection Against Deleterious Mutations via Variable Male Search Success.” Journal Article. Biology Letters 5 (6): 795–97. doi:10.1098/rsbl.2009.0475.

Maklakov, A. A., C. Fricke, and G. Arnqvist. 2007. “Sexual Selection Affects Lifespan and Aging in the Seed Beetle.” Journal Article. Aging Cell 6 (6): 739–44. doi:10.1111/j.1474-9726.2007.00333.x.

Maklakov, Alexei A., and Claudia Fricke. 2009. “Sexual Selection Did Not Contribute to the Evolution of Male Lifespan Under Curtailed Age at Reproduction in a Seed Beetle.” Journal Article. Ecological Entomology 34 (5): 638–43. doi:10.1111/j.1365-2311.2009.01113.x.

Maklakov, Alexei A., Russell Bonduriansky, and Robert C. Brooks. 2009. “Sex Differences, Sexual Selection, and Ageing: An Experimental Evolution Approach.” Journal Article. Evolution 63 (10): 2491–2503. doi:10.1111/j.1558-5646.2009.00750.x.

Mallet, M. A., and A. K. Chippindale. 2011. “Inbreeding Reveals Stronger Net Selection on Drosophila Melanogaster Males: Implications for Mutation Load and the Fitness of Sexual Females.” Journal Article. Heredity 106 (6): 994–1002. doi:10.1038/hdy.2010.148.

Mallet, Martin A., Jessica M. Bouchard, Christopher M. Kimber, and Adam K. Chippindale. 2011. “Experimental Mutation-Accumulation on the X Chromosome of Drosophila Melanogaster Reveals Stronger Selection on Males Than Females.” Journal Article. Bmc Evolutionary Biology 11. doi:10.1186/1471-2148-11-156.

Martin, O. Y., and D. J. Hosken. 2003. “Costs and Benefits of Evolving Under Experimentally Enforced Polyandry or Monogamy.” Journal Article. Evolution 57 (12): 2765–72. http://onlinelibrary.wiley.com/store/10.1111/j.0014-3820.2003.tb01518.x/asset/j.0014-3820.2003.tb01518.x.pdf?v=1&t=j3z3cgcu&s=03fd98bf0e04f07d109203a83ba57172ba707947.

———. 2004. “Reproductive Consequences of Population Divergence Through Sexual Conflict.” Journal Article. Current Biology 14 (10): 906–10. doi:10.1016/j.cub.2004.04.043.

Matsuyama, T., and H. Kuba. 2009. “Mating Time and Call Frequency of Males Between Mass-Reared and Wild Strains of Melon Fly, Bactrocera Cucurbitae (Coquillett) (Diptera: Tephritidae).” Journal Article. Applied Entomology and Zoology 44 (2): 309–14. doi:10.1303/aez.2009.309.

McGuigan, K., D. Petfield, and M. W. Blows. 2011. “Reducing Mutation Load Through Sexual Selection on Males.” Journal Article. Evolution 65 (10): 2816–29. doi:10.1111/j.1558-5646.2011.01346.x.

McKean, Kurt A., and Leonard Nunney. 2008. “Sexual Selection and Immune Function in Drosophila Melanogaster.” Journal Article. Evolution 62 (2): 386–400. doi:10.1111/j.1558-5646.2007.00286.x.

McLain, D. K. 1992. “Population Density and the Intensity of Sexual Selection on Body Length in Spatially or Temporally Restricted Natural Populations of a Seed Bug.” Journal Article. Behavioral Ecology and Sociobiology 30 (5): 347–56. doi:10.1007/BF00170602.

McNamara, Kathryn B., Emile van Lieshout, and Leigh W. Simmons. 2014. “A Test of the Sexy-Sperm and Good-Sperm Hypotheses for the Evolution of Polyandry.” Journal Article. Behavioral Ecology 25 (4): 989–95. doi:10.1093/beheco/aru067.

McNamara, Kathryn B., Stephen P. Robinson, Marta E. Rosa, Nadia S. Sloan, Emile van Lieshout, and Leigh W. Simmons. 2016. “Male-Biased Sex Ratio Does Not Promote Increased Sperm Competitiveness in the Seed Beetle, Callosobruchus Maculatus.” Journal Article. Scientific Reports 6. doi:10.1038/srep28153.

Meffert, Lisa M., Jennifer L. Regan, Sara K. Hicks, Nsuela Mukana, and Stacey B. Day. 2006. “Testing Alternative Methods for Purging Genetic Load Using the Housefly (Musca Domestica L.).” Journal Article. Genetica 128 (1-3): 419–27. doi:10.1007/s10709-006-7667-y.

Michalczyk, Lukasz, Anna L. Millard, Oliver Y. Martin, Alyson J. Lumley, Brent C. Emerson, and Matthew J. G. Gage. 2011. “Experimental Evolution Exposes Female and Male Responses to Sexual Selection and Conflict in Tribolium Castaneum.” Journal Article. Evolution 65 (3): 713–24. doi:10.1111/j.1558-5646.2010.01174.x.

Michalczyk, Lukasz, Anna L. Millard, Oliver Y. Martin, Alyson J. Lumley, Brent C. Emerson, Tracey Chapman, and Matthew J. G. Gage. 2011. “Inbreeding Promotes Female Promiscuity.” Journal Article. Science 333 (6050): 1739–42. doi:10.1126/science.1207314.

Morrow, E. H., A. D. Stewart, and W. R. Rice. 2008. “Assessing the Extent of Genome-Wide Intralocus Sexual Conflict via Experimentally Enforced Gender-Limited Selection.” Journal Article. Journal of Evolutionary Biology 21 (4): 1046–54. doi:10.1111/j.1420-9101.2008.01542.x.

Nakagawa, Shinichi, Robert Poulin, Kerrie Mengersen, Klaus Reinhold, Leif Engqvist, Malgorzata Lagisz, and Alistair M. Senior. 2015. “Meta-Analysis of Variation: Ecological and Evolutionary Applications and Beyond.” Journal Article 6 (2): 152.

Nandy, B., V. Gupta, N. Udaykumar, M. A. Samant, S. Sen, and N. G. Prasad. 2014. “Experimental Evolution of Female Traits Under Different Levels of Intersexual Conflict in Drosophila Melanogaster.” Journal Article. Evolution 68 (2): 412–25. doi:10.1111/evo.12271.

Nandy, Bodhisatta, Pratip Chakraborty, Vanika Gupta, Syed Zeeshan Ali, and Nagaraj Guru Prasad. 2013. “Sperm Competitive Ability Evolves in Response to Experimental Alteration of Operational Sex Ratio.” Journal Article. Evolution 67 (7): 2133–41. doi:10.1111/evo.12076.

Nelson, Adam C., Kevin E. Colson, Steve Harmon, and Wayne K. Potts. 2013. “Rapid Adaptation to Mammalian Sociality via Sexually Selected Traits.” Journal Article. Bmc Evolutionary Biology 13. doi:10.1186/1471-2148-13-81.

Nie, Haiyan, and Kenneth Kaneshiro. 2016. “Sexual Selection and Incipient Speciation in Hawaiian Drosophila.” Journal Article. Science Bulletin 61 (2): 125–31. doi:10.1007/s11434-015-0976-8.

Palopoli, Michael F., Colin Peden, Caitlin Woo, Ken Akiha, Megan Ary, Lori Cruze, Jennifer L. Anderson, and Patrick C. Phillips. 2015. “Natural and Experimental Evolution of Sexual Conflict Within Caenorhabditis Nematodes.” Journal Article. Bmc Evolutionary Biology 15. doi:10.1186/s12862-015-0377-2.

Partridge, L. 1980a. “Mate Choice Increases a Component of Offspring Fitness in Fruit-Flies.” Journal Article. Nature 283 (5744): 290–91. doi:10.1038/283290a0.

———. 1980b. “Mate Choice Increases a Component of Offspring Fitness in Fruit-Flies.” Journal Article. Nature 283 (5744): 290–91. doi:10.1038/283290a0.

Perry, Jennifer C., Richa Joag, David J. Hosken, Nina Wedell, Jacek Radwan, and Stuart Wigby. 2016. “Experimental Evolution Under Hyper-Promiscuity in Drosophila Melanogaster.” Journal Article. Bmc Evolutionary Biology 16. doi:10.1186/s12862-016-0699-8.

Pélabon, C., L. K. Larsen, G. H. Bolstad, A. Viken, I. A. Fleming, and G. Rosenqvist. 2014. “The Effects of Sexual Selection on Life-History Traits: An Experimental Study on Guppies.” Journal Article. Journal of Evolutionary Biology 27 (2): 404–16. doi:10.1111/jeb.12309.

Pischedda, A., and A. Chippindale. 2005. “Sex, Mutation and Fitness: Asymmetric Costs and Routes to Recovery Through Compensatory Evolution.” Journal Article. Journal of Evolutionary Biology 18 (4): 1115–22. doi:10.1111/j.1420-9101.2005.00915.x.

Pischedda, Alison, and Adam K. Chippindale. 2006. “Intralocus Sexual Conflict Diminishes the Benefits of Sexual Selection.” Journal Article. Plos Biology 4 (11): 2099–2103. doi:10.1371/journal.pbio.0040356.

Pitnick, S., W. D. Brown, and G. T. Miller. 2001. “Evolution of Female Remating Behaviour Following Experimental Removal of Sexual Selection.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 268 (1467): 557–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088640/pdf/PB010557.pdf.

Pitnick, S., G. T. Miller, J. Reagan, and B. Holland. 2001. “Males’ Evolutionary Responses to Experimental Removal of Sexual Selection.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 268 (1471): 1071–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088710/pdf/PB011071.pdf.

Plesnar, Agata, Magdalena Konior, and Jacek Radwan. 2011. “The Role of Sexual Selection in Purging the Genome of Induced Mutations in the Bulb Mite (Rizoglyphus Robini).” Journal Article. Evolutionary Ecology Research 13 (2): 209–16.

Plesnar-Bielak, A., A. M. Skrzynecka, Z. M. Prokop, M. Kolasa, M. Dzialo, and J. Radwan. 2013. “No Evidence for Reproductive Isolation Through Sexual Conflict in the Bulb Mite Rhizoglyphus Robini.” Journal Article. PLoS ONE 8 (9). doi:10.1371/journal.pone.0074971.

Plesnar-Bielak, Agata, Anna M. Skrzynecka, Zofia M. Prokop, and Jacek Radwan. 2012. “Mating System Affects Population Performance and Extinction Risk Under Environmental Challenge.” Journal Article. Proceedings of the Royal Society B-Biological Sciences 279 (1747): 4661–7. doi:10.1098/rspb.2012.1867.

Power, D. J., and L. Holman. 2014. “Polyandrous Females Found Fitter Populations.” Journal Article. Journal of Evolutionary Biology 27 (9): 1948–55. doi:10.1111/jeb.12448.

———. 2015. “Assessing the Alignment of Sexual and Natural Selection Using Radiomutagenized Seed Beetles.” Journal Article. Journal of Evolutionary Biology 28 (5): 1039–48. doi:10.1111/jeb.12625.

Price, T. A. R., G. D. D. Hurst, and N. Wedell. 2010a. “Polyandry Prevents Extinction.” Journal Article. Current Biology 20 (5): 471–75. doi:10.1016/j.cub.2010.01.050.

———. 2010b. “Polyandry Prevents Extinction.” Journal Article. Current Biology 20 (5): 471–75. doi:10.1016/j.cub.2010.01.050.

Prokop, Z. M., M. A. Prus, T. S. Gaczorek, K. Sychta, J. K. Palka, A. Plesnar-Bielak, and M. Skarboń. 2017. “Do Males Pay for Sex? Sex-Specific Selection Coefficients Suggest Not.” Journal Article. Evolution 71 (3): 650–61. doi:10.1111/evo.13151.

Promislow, D. E. L., E. A. Smith, and L. Pearse. 1998. “Adult Fitness Consequences of Sexual Selection in Drosophila Melanogaster.” Journal Article. Proceedings of the National Academy of Sciences of the United States of America 95 (18): 10687–92. doi:10.1073/pnas.95.18.10687.

Radwan, J. 2004. “Effectiveness of Sexual Selection in Removing Mutations Induced with Ionizing Radiation.” Journal Article. Ecology Letters 7 (12): 1149–54. doi:10.1111/j.1461-0248.2004.00681.x.

Radwan, J., J. Unrug, K. Snigorska, and K. Gawronska. 2004. “Effectiveness of Sexual Selection in Preventing Fitness Deterioration in Bulb Mite Populations Under Relaxed Natural Selection.” Journal Article. Journal of Evolutionary Biology 17 (1): 94–99. doi:10.1046/j.1420-9101.2003.00646.x.

Re, A. C. Del. 2013. Compute.es: Compute Effect Sizes. R Package. http://cran.r-project.org/web/packages/compute.es.

Rundle, H. D., S. F. Chenoweth, and M. W. Blows. 2009. “The Diversification of Mate Preferences by Natural and Sexual Selection.” Journal Article. Journal of Evolutionary Biology 22 (8): 1608–15. doi:10.1111/j.1420-9101.2009.01773.x.

Rundle, H. D., A. Odeen, and A. 0 Mooers. 2007. “An Experimental Test for Indirect Benefits in Drosophila Melanogaster.” Journal Article. BMC Evolutionary Biology 7. doi:10.1186/1471-2148-7-36.

Rundle, Howard D., Stephen F. Chenoweth, and Mark W. Blows. 2006. “The Roles of Natural and Sexual Selection During Adaptation to a Novel Environment.” Journal Article. Evolution 60 (11): 2218–25. doi:10.1111/j.0014-3820.2006.tb01859.x.

Savic Veselinovic, M., S. Pavkovic-Lucic, Z. Kurbalija Novicic, M. Jelic, and M. Andelkovic. 2013a. “Sexual Selection Can Reduce Mutational Load in Drosophila Subobscura.” Journal Article. Genetika-Belgrade 45 (2): 537–52. doi:10.2298/GENSR1302537V.

———. 2013b. “Sexual Selection Can Reduce Mutational Load in Drosophila Subobscura.” Journal Article. Genetika-Belgrade 45 (2): 537–52. doi:10.2298/GENSR1302537V.

Senior, Alistair M., Alison K. Gosby, Jing Lu, Stephen J. Simpson, and David Raubenheimer. 2016. “Meta-Analysis of Variance: An Illustration Comparing the Effects of Two Dietary Interventions on Variability in Weight.” Journal Article. Evolution, Medicine, and Public Health 2016 (1): 244–55. doi:10.1093/emph/eow020.

Senior, Alistair M., Catherine E. Grueber, Tsukushi Kamiya, Malgorzata Lagisz, Katie O’Dwyer, Eduardo S. A. Santos, and Shinichi Nakagawa. 2016. “Heterogeneity in Ecological and Evolutionary Meta-Analyses: Its Magnitude and Implications.” Ecology 97 (12): 3293–9. doi:10.1002/ecy.1591.

Seslija, D., I. Marecko, and N. Tucic. 2008. “Sexual Selection and Senescence: Do Seed Beetle Males (Acanthoscelides Obtectus, Bruchidae, Coleoptera) Shape the Longevity of Their Mates?” Journal Article. Journal of Zoological Systematics and Evolutionary Research 46 (4): 323–30. doi:10.1111/j.1439-0469.2008.00469.x.

Sharma, Manmohan D., John Hunt, and David J. Hosken. 2012. “Antagonistic Responses to Natural and Sexual Selection and the Sex-Specific Evolution of Cuticular Hydrocarbons in Drosophila Simulans.” Journal Article. Evolution 66 (3): 665–77. doi:10.1111/j.1558-5646.2011.01468.x.

Sharp, N. P., and A. F. Agrawal. 2008. “Mating Density and the Strength of Sexual Selection Against Deleterious Alleles in Drosophila Melanogaster.” Journal Article. Evolution 62 (4): 857–67. doi:10.1111/j.1558-5646.2008.00333.x.

Sharp, Nathaniel P., and Aneil F. Agrawal. 2009. “Sexual Selection and the Random Union of Gametes: Testing for a Correlation in Fitness Between Mates in Drosophila Melanogaster.” Journal Article. American Naturalist 174 (5): 613–22. doi:10.1086/605960.

Simmons, Leigh W., and Renee C. Firman. 2014. “Experimental Evidence for the Evolution of the Mammalian Baculum by Sexual Selection.” Journal Article. Evolution 68 (1): 276–83. doi:10.1111/evo.12229.

Simmons, Leigh W., and Francisco Garcia-Gonzalez. 2008. “Evolutionary Reduction in Testes Size and Competitive Fertilization Success in Response to the Experimental Removal of Sexual Selection in Dung Beetles.” Journal Article. Evolution 62 (10): 2580–91. doi:10.1111/j.1558-5646.2008.00479.x.

———. 2011. “Experimental Coevolution of Male and Female Genital Morphology.” Journal Article. Nature Communications 2. doi:10.1038/ncomms1379.

Simmons, Leigh W., Clarissa M. House, John Hunt, and Francisco Garcia-Gonzalez. 2009. “Evolutionary Response to Sexual Selection in Male Genital Morphology.” Journal Article. Current Biology 19 (17): 1442–6. doi:10.1016/j.cub.2009.06.056.

Snook, Rhonda R., Nelly A. Gidaszewski, Tracey Chapman, and Leigh W. Simmons. 2013. “Sexual Selection and the Evolution of Secondary Sexual Traits: Sex Comb Evolution in Drosophila.” Journal Article. Journal of Evolutionary Biology 26 (4): 912–18. doi:10.1111/jeb.12105.

Tilszer, M., K. Antoszczyk, N. Sałek, E. Zajac, and J. Radwan. 2006. “Evolution Under Relaxed Sexual Conflict in the Bulb Mite Rhizoglyphus Robini.” Journal Article. Evolution 60 (9): 1868–73. doi:10.1554/06-060.1.

Whitlock, M. C., and D. Bourguet. 2000. “Factors Affecting the Genetic Load in Drosophila: Synergistic Epistasis and Correlations Among Fitness Components.” Journal Article. Evolution 54 (5): 1654–60. http://onlinelibrary.wiley.com/store/10.1111/j.0014-3820.2000.tb00709.x/asset/j.0014-3820.2000.tb00709.x.pdf?v=1&t=j3z3k4zk&s=e04e52c50923ef3f847e776940854982021862a1.

Wigby, S., and T. Chapman. 2004. “Female Resistance to Male Harm Evolves in Response to Manipulation of Sexual Conflict.” Journal Article. Evolution 58 (5): 1028–37. http://onlinelibrary.wiley.com/store/10.1111/j.0014-3820.2004.tb00436.x/asset/j.0014-3820.2004.tb00436.x.pdf?v=1&t=j3z3kjfs&s=e7d435680d787af13772d7111d209fb6d5125822.